Numan Khurshid
Numan is a senior PhD Student in Computer Vision & Graphics Lab (cvglab) at LUMS Syed Babar Ali School of Science and Engineering.
Numan is a senior PhD Student in Computer Vision & Graphics Lab (cvglab) at LUMS Syed Babar Ali School of Science and Engineering.
Muhammad Ahmed Bhimra, Usman Nazir, Murtaza Taj International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, May 12-17, 2019 Abstract In this paper, we propose an approach to recognize spatio-temporal changes from remote sensing data. Instead of performing independent analysis on each instance of satellite imagery, we proposed a 3D Convolutional Neural Network…
Numan Khurshid, Mohbat Tharani, Murtaza Taj, and Faisal Qureshi Abstract: We propose a new method for remote sensing image matching. The proposed method uses encoder subnetwork of an autoencoder pre-trained on GTCrossView data to construct image features. A discriminator network trained on University of California Merced Land Use/Land Cover dataset (LandUse) and High-resolution Satellite Scene…
Tariq Mehmood*, Hamza Ahmad*, Muhammad Haroon Shakeel, Murtaza Taj (* contributed equally) Abstract: EEG-based brain-computer interfaces (BCIs) have shown promise in various applications, such as motor imagery and cognitive state monitoring. However, decoding visual representations from EEG signals remains a significant challenge due to their complex and noisy nature. We thus propose a novel 5-stage…
Usman Nazir, Wadood Islam, Sara Khalid, Murtaza Taj Abstract: Land-use monitoring is fundamental for spatial planning, particularly in view of compound impacts of growing global populations and climate change. Despite existing applications of deep learning in land use monitoring, standard convolutional kernels in deep neural networks limit the applications of these networks to the Euclidean…
Sana Jabbar and Murtaza Taj Abstract: Accurate estimation of building heights is crucial for effective urban planning and resource management as it provides essential geometric information about the urban landscape. Many end-to-end deep learning-based networks have been proposed for image-to-height mapping using high-resolution nonoptical and optical remote sensing imagery. In this study, we develop a…
Deep Learning is a hierarchical learning methodology based on artificial neural networks which are algorithms inspired by the structure and function of the brain. It has applications in wide-range of industries these days such as face-recognisers working at massive scales, robotics, speech translation, text analysis, improving customer experience, autonomous vehicles etc. In this course we…