|

JMP2024 – An exploratory deep learning approach to investigate tuberculosis pathogenesis in nonhuman primate model

Faisal Yaseen, Murtaza Taj, Resmi Ravindran, Fareed Zaffar, Paul A. Luciw, Aamer Ikram, Saerah Iffat Zafar, Tariq Gill, Michael Hogarth and Imran H. Khan Abstract: Background Tuberculosis (TB) kills approximately 1.6 million people yearly despite the fact anti-TB drugs are generally curative. Therefore, TB-case detection and monitoring of therapy, need a comprehensive approach. Automated radiological…

IEEETGRS2024 – Stereollax Net: Stereo Parallax Based Deep Learning Network For Building Height Estimation
|

IEEETGRS2024 – Stereollax Net: Stereo Parallax Based Deep Learning Network For Building Height Estimation

Sana Jabbar and Murtaza Taj Abstract: Accurate estimation of building heights is crucial for effective urban planning and resource management as it provides essential geometric information about the urban landscape. Many end-to-end deep learning-based networks have been proposed for image-to-height mapping using high-resolution nonoptical and optical remote sensing imagery. In this study, we develop a…

|

AAAI2023 – Spatio-Temporal driven Attention Graph Neural Network with Block Adjacency matrix (STAG-NN-BA) for Remote Land-use Change Detection

Usman Nazir, Wadood Islam, Sara Khalid, Murtaza Taj Abstract: Land-use monitoring is fundamental for spatial planning, particularly in view of compound impacts of growing global populations and climate change. Despite existing applications of deep learning in land use monitoring, standard convolutional kernels in deep neural networks limit the applications of these networks to the Euclidean…

|

ICONIP2023 – Stereoential Net: Deep Network for Learning Building Height Using Stereo Imagery

Sana Jabbar, Murtaza Taj Abstract: Height estimation plays a crucial role in the planning and assessment of urban development, enabling effective decision-making and evaluation of urban built areas. Accurate estimation of building heights from remote sensing optical imagery poses significant challenges in preserving both the overall structure of complex scenes and the elevation details of…

ICPR2022 – Neural Network Pruning Through Constrained Reinforcement Learning
|

ICPR2022 – Neural Network Pruning Through Constrained Reinforcement Learning

Shehryar Malik, Muhammad Umair Haider*, Omer Iqbal, Murtaza Taj Abstract: Network pruning reduces the size of neural networks by removing (pruning) neurons such that the performance drop is minimal. Traditional pruning approaches focus on designing metrics to quantify the usefulness of a neuron which is often quite tedious and sub-optimal. More recent approaches have instead…

ICASSP2022 -Camera Calibration through Camera Projection Loss
|

ICASSP2022 -Camera Calibration through Camera Projection Loss

Talha Hanif Butt, Murtaza Taj Abstract: Camera calibration is a necessity in various tasks including 3D reconstruction, hand-eye coordination for a robotic interaction, autonomous driving, etc. In this work we propose a novel method to predict extrinsic (baseline, pitch, and translation), intrinsic (focal length and principal point offset) parameters using an image pair. Unlike existing…

BMVC2021 – Teacher-Class Network: A Neural Network Compression Mechanism
|

BMVC2021 – Teacher-Class Network: A Neural Network Compression Mechanism

Shaiq Munir Malik, Fnu Mohbat, Muhammad Umair Haider, Muhammad Musab Rasheed and Murtaza Taj Abstract: To reduce the overwhelming size of Deep Neural Networks, teacher-student techniques aim to transfer knowledge from a complex teacher network to a simple student network. We instead propose a novel method called the teacher-class network consisting of a single teacher…

ICIP2021 – Spatio-Temporal Crop Classification On Volumetric Data
|

ICIP2021 – Spatio-Temporal Crop Classification On Volumetric Data

M. U. Qadeer, S. Saeed, M. Taj and A. Muhammad Abstract: Large-area crop classification using multi-spectral imagery is a widely studied problem for several decades and is generally addressed using classical Random Forest classifier. Recently, deep convolutional neural networks (DCNN) have been proposed. However, these methods only achieved results comparable with Random Forest. In this…

ICIP2021 – Comprehensive Online Network Pruning via Learnable Scaling Factors
|

ICIP2021 – Comprehensive Online Network Pruning via Learnable Scaling Factors

Muhammad Umair Haider and Murtaza Taj Abstract: One of the major challenges in deploying deep neural network architectures is their size which has an adverse effect on their inference time and memory requirements. Deep CNNs can either be pruned width-wise by removing filters or depth-wise by removing layers and blocks. Width wise pruning (filter pruning)…

IEEEJSTAR2020 – Kiln-Net: A gated neural network for detection of brick kilns in South Asia
| |

IEEEJSTAR2020 – Kiln-Net: A gated neural network for detection of brick kilns in South Asia

Usman Nazir, Usman Khalid Mian, Muhammad Usman Sohail, Murtaza Taj and Momin Uppal Abstract: The availability of high-resolution satellite imagery has enabled several new applications. One such application is identification of brick kilns for the elimination of modern day slavery which is also one of UN’s Sustainable Development Goals (SDG). This requires automated analysis of…