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Motivation

● 2 million tonnes of plastic produced in 1950​

● 368 million tonnes of plastic produced in 2019​

● 18,400% increase in plastic production​

● 75% plastic ever produced is not recycled

● ~9704 tonnes of plastic
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Where does the plastic go?​
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Image from Google Maps
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Microplastics

● Decomposed form of plastic

● Can be less than 100 nm in size

[1]Kumar, Manish, et al. "Microplastics as pollutants in agricultural soils." Environmental Pollution [2]Sharma, Kavita, "Solid-state fermentation for vermicomposting: a step toward sustainable and healthy soil.”

● Effect soil fertility by damaging

the soil flora and fauna [1]

● Soil flora and fauna are 

responsible for nutrient 

recycling and organic matter

Decomposition [2]

● Size of covid-19 is 60–140 nm
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Thesis Aims
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Thesis Aims

● Trash classification and localisation system based on deep learning

● Trash data analysis for identifying major pollutants

● Water flow measurement through visual sensor based on trash detection
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Prior Work
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Prior Work

● Trash identification

○ Classification

○ Object Detection

○ Segmentation

Classification

Classification  

+

Localization Segmentation
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Prior Work: Classification

● Classify if an object is present in the image

[1]Huang, Gao, et al. [2]Howard, Andrew G., et al. [3]Szegedy et al.

● Standard Architectures
○ DenseNet [1]

○ MobileNet [2]

○ Inception-v4 [3]

○ GoogLeNet [3]
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Prior Work: Object Detection

● Simultaneous localization and classification

[1]Ren et al. [2]Redmon. et al.      [3]Sermanet et al.

● Standard Architectures
○ Faster RCNN [1]

○ YOLO [2]

○ Overfeat [3]
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Prior Work: Segmentation

● Pixel-wise classification

[1]He, Kaiming, et al.

● Standard architectures
○ Mask R-CNN [1]
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Prior Work: Trash Analysis

● Indoor Trash
○ TrashNet [1]

■ Classification of 6 trash categories

■ Inception-v4, DenseNet, MobileNet

[1]Classification of TrashNet Dataset Based on Deep Learning Models [2]Tao Wang, A Multi-Level Approach to Waste Object 

Segmentation

○ MJU-Waste [2]

■ RGBD waste object segmentation
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Prior Work: Trash Analysis

● Outdoor Trash
○ TACO [1]

■ Dataset the with the most diverse amount of backgrounds

■ Water Trash accounts for only 3% of the whole dataset

■ Annotated for segmentation

■ Mask R-CNN

[1]Pedro F Proenca,TACO: Trash Annotations in Context for Litter Detection, 2020  [2]Mohammad Saeed Rad, A computer vision system to localize and classify wastes on the streets, 2017

○ Street [2]

■ Camera mounted on a sweeper truck

■ Uses a combination of GoogleNet and OverFeat

■ Cleanliness density map creation based on

detected trash
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Prior Work: Trash Analysis

● Ocean Trash
○ Trash-det [1]

■ Autonomous underwater vehicles (AUVs)

■ Detection of plastic objects on ocean floor

■ YOLOv2, SSD etc.

[1]Robotic Detection of Marine Litter Using Deep Visual Detection Models 2019 [2]Jungseok Hong, Trashcan: A semantically-segmented dataset towards visual detection of marine 

debris, 2020

○ Trashcan [2]

■ Autonomous underwater vehicles (AUVs)

■ Segmentation of floating and ocean floor plastics

■ Faster R-CNN, Mask R-CNN
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Prior Work: Trash Analysis

● River Trash
○ River Plastics [1]

■ Plastics and non-plastics

■ Detection using Inception v2

■ Segmentation using Faster R-CNN

■ Only contains top-view of trash objects

[1] Colin van Lieshout, Automated river plastic monitoring using deep learning and cameras 2020 19



Prior Work: Dataset Comparison
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Summary of Prior Work: Trash Analysis

● Majority of the work has been done on street 

trash

● River channels have been explored for 

plastic/non-plastic detection

● Hardly no work has been done on water 

channels

● No public data available on water trash
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Prior Work: Water Flow Analysis

● Water flow measure through dense optical flow [1]
○ Camera placement is parallel to water stream

○ Used rectangular box for mapping pixel coordinates to

real world dimensions

○ Divided whole area into multiple regions and applied optical

flow to get displacement of particles

● Real-Time, Inexpensive, and Portable Measurement

of Water Surface Velocity through Smartphone [2]
○ Measurement of water flow through objects

○ Detecting objects through rgb color variation

○ Works at a specific phone height and velocity limits

○ Not deployable

22[1] Wu, Heng, et al. 2019  [2]Yang, Tong, et al. 2020



Our Prior Work

● Segmentation

● Separable Convolution in U-Net

● Novel Loss function for Water and Trash

Imbalance problem

● 2x improvement in processing time with

10x reduction in model parameters
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Problem Formulation/Statement
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Problem Formulation/Statement

The problem can be formulated as:

● Dataset Collection & Annotation
○ Data collection from multiple sites

○ Class-wise annotation of trash objects

● Automatic Quantification - Fine Grained Detection & 

Classification
○ Deep learning system for trash detection and classification 
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● Trash Class Distribution Analysis
○ Detailed analysis on major water channel pollution contributors

● Water Flow Measurement
○ Measuring water flow through trash detection



Dataset Collection & Annotation
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Dataset Collection

● Two datasets collected
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● Trash Classification Dataset (TCD)
○ Image dataset

○ Deep Learning system for trash detection

● Trash Flow Rate Dataset (TFD)
○ Video Dataset

○ Trash Class Distribution Analysis

○ Water Flow Analysis



Dataset Collection (TCD)

● 7 Sites

● At least 20-30 minutes of video per site in different weather conditions  
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Dataset Annotation (TCD)

● Trash/Non-Trash
○ Single Class, 13,500 Images, 48,450 instances

● Trash
○ 3 Super-classes, 12 classes,

13,500 images, 48,450 instances
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Data Distribution (TCD)
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Dataset Collection (TFD)

● 2 Sites

● ~49 hours of video data collected
○ Liaquatabad - 24 hours

○ Defence Road - 25 hours 
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Dataset Annotation (TFD)

● Camera calibration data for trash flow rate

● Trash
○ 3 Super-classes, 14 classes

○ 19,165 unique instances
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Data Distribution (TFD)
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Automatic Quantification

Fine Grained Detection & Classification
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Trash/Non-Trash Detection Challenges
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Trash/Non-Trash Detection Challenges

● Variable Object Sizes (COCO Standard)
○ Deformed objects cause intra-class variance
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Fine-grained Detection & Classification Challenges

● Texture and Geometrical similarity

Existing object detectors fail to localize and classify in these challengings cases
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Methodology

● What is attention?

○ How does the human visual system work?
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Methodology

● Improving simultaneous localization and classification via Attention

*Chaudhari, Sneha, et al. "An attentive survey of attention models."

● Attention for machine translation*
○ Encoder-Decoder network

○ Attention as relative importance
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Methodology

● Attention for image classification*

*Jetley, Saumya, et al. "Learn to pay attention." **Fu, Jun, et al. "Dual attention network for scene segmentation."

● Attention for image segmentation**
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Methodology

● Log Attention Module (LAM)
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Methodology: Introducing Attention in Yolo-v3

● Sliding Window Detection

● YOLO: You Only Look Once
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Methodology: Introducing Attention in Yolo-v3

● 4 Log Attention Modules (LAM) 
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Methodology: Introducing Attention in PeleeNet

● PeleeNet
○ A variant of densenet*

○

○ Densenet41

○ Stem Block for better feature expression

○ Dynamic Number of Channels in BottleNeck Layer

○ Residual Connections for fine-grained features

*Gao Huang,  Densely Connected Convolutional Networks 44



Methodology: Introducing Attention in PeleeNet

● 2 Log Attention Modules (LAM)
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Methodology: Water Flow Calculation

● Water flow measurement through object detection

● Steps:
○ Calculating vertical distance travelled by trash object

○ Divide vertical distance by time taken to travel between point A and B to get water flow
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Methodology: Water Flow Calculation

● Pixel to Pixel real world distance?
○ Take image of an object with known dimension (top-view)

○ Map pixel dimensions to real world dimensions
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● Dataset does not contain top-view

● Videos with slight tilt or perspective



Methodology: Water Flow Calculation

● Orthogonal projection of tilted image through Homography
○ Checkerboard Pattern Used (Checker dimensions = 4 inches)

○ Orthogonal image creation for calculating transformation
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Methodology: Water Flow Calculation

● Orthogonal projection of tilted image through Homography
○ 9 corresponding points from both images
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Methodology: Water Flow Calculation

● Orthogonal projection of tilted image through Homography

In inhomogenous coordinates 
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Methodology: Water Flow Calculation

● Orthogonal projection of tilted image through Homography

Set 
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Methodology: Water Flow Calculation

● Orthogonal projection of tilted image through Homography
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Methodology: Water Flow Calculation

● Orthogonal projection of tilted image through Homography
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Results & Analysis
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Experimental Setup

Dataset

● Split (TCD)

○ Training - 12500 samples

○ Testing - 1000 samples

* Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." **Wang,"Pelee: A real-time object detection system on mobile devices."

Algorithms

● Yolo-v3*

● Yolo-v3-Tiny*

● PeeleNet**

● Yolo-v3+Attn

● PeeleNet+Attn
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Evaluation Metrics

● Precision

● Recall

● Intersection over union (IoU)
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Evaluation Metrics

● Average Precision (AP)

● Three different object sizes
○ Small

○ Medium

○ Large 
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Qualitative Results
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Object Detection Analysis
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Object Detection Analysis

● Plastic bag occupies most of the predictions. 
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Trash Class Distribution Analysis (TFD)

● Liaquatabad (Cantonment Drain)
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Trash Class Distribution Analysis (TFD)

● Defence Road (Hudiara Drain)
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Trash Class Distribution Analysis (TFD)

● ATOPH (Average Trash Objects Per Hour)
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Water Flow Calculation

● Liaquatabad site (Cantonment Drain) after applying Homography
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Water Flow Calculation

● Defence Road site (Hudiara Drain) after applying homography
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Water Flow Calculation

● Water Flow Calculation For Liaquatabad
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Checker dimension = 4 inches = 0.1016 m

Checker Pixels = 52 (After applying Homography)

Pixel Distance =  0.1016/52 = 0.0019538 m

Y1 = 445 pixel (Image at t = 0 sec)

Y2 = 611 pixel (Image at t = 1 sec)

Water Flow = (Y2 - Y1) * Pixel Distance = 0.32 m/s



Water Flow Calculation

● Water Flow Calculation For Defence Road
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Checker dimension = 4 inches = 0.1016 m

Checker Pixels = 27 (After applying Homography)

Pixel Distance =  0.1016/27 = 0.0037629 m

Y1 = 266 pixel (Image at t = 0 sec)

Y2 = 447 pixel (Image at t = 1 sec)

Water Flow = (Y2 - Y1) * Pixel Distance = 0.67 m/s



Water Flow Calculation
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Defence Road (Hudiara Drain) 30.18m
Liaquatabad (Cantonment Drain) 10.96m 

Water Flow: 0.67 m/sWater Flow: 0.32 m/s



Summary

Achieved

● Dataset for fine-grained trash detection and classification (TCD)

● Improvement in localisation, detection and classification

● Dataset for trash class distribution (TFD)

● Trash class distribution analysis

● Water flow measurement

Future Work

● Solve data imbalance

● Validity of water flow measurement through flow meters
69
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