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Abstract

Despite the recent advances in deep neural networks, standard
convolutional kernels limit the applications of these networks
to the Euclidean domain only. Considering the geodesic na-
ture of the measurement of the earth’s surface, remote sens-
ing is one such area that can benefit from non-Euclidean and
spherical domains. For this purpose, we design a novel Graph
Neural Network architecture for spatial and spatio-temporal
classification using satellite imagery to acquire insights into
socio-economic indicators. We propose a hybrid attention
method to learn the relative importance of irregular neighbors
in remote sensing data. Instead of classifying each pixel, we
propose a method based on Simple Linear Iterative Clustering
(SLIC) image segmentation and Graph Attention Network.
The superpixels obtained from SLIC become the nodes of
our Graph Convolution Network (GCN). We then construct a
region adjacency graph (RAG) where each superpixel is con-
nected to every other adjacent superpixel in the image, en-
abling information to propagate globally. Finally, we propose
a Spatially driven Attention Graph Neural Network (SAG-
NN) to classify each RAG. We also propose an extension to
our SAG-NN for spatio-temporal data. Unlike regular grids of
pixels in images, superpixels are irregular in nature and can-
not be used to create spatio-temporal graphs. We introduce
temporal bias by combining unconnected RAGs from each
image into one supergraph. This is achieved by introducing
block adjacency matrices resulting in novel Spatio-Temporal
driven Attention Graph Neural Network with Block Adja-
cency matrix (STAG-NN-BA). We evaluate our proposed
methods on two remote sensing datasets namely Asia14 and
C2D2. In comparison with both non-graph and graph-based
approaches our SAG-NN and STAG-NN-BA achieved supe-
rior accuracy on all the datasets while incurring less compu-
tation cost. The code and dataset will be made public via our
GitHub repository.

1 Climate Impact Statement
The proposed innovative approaches: SAG-NN and STAG-
NN, aimed at harnessing the potential of spatial and spatio-
temporal data, is not only limited to classification tasks but
extends its utility to detect critical transitions. Specifically,
transitions between classes such as construction, destruc-
tion, cultivation, and decultivation - representing fundamen-
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tal human activities with historical significance - can be ef-
fectively identified (see Fig. 10 in Appendix). Thereby the
proposed approach will contribute to enhanced understand-
ing and actionable insights in addressing climate change
and its complex ramifications. Our proposed approach con-
tributes to mitigation efforts by monitoring land use and re-
forestation, a crucial initial stride towards expediting decar-
bonization and estimating greenhouse gas emissions.

2 Introduction
Since the dawn of civilization, there have been changes in
land-use particularly due to two of the ancientest occupa-
tions, construction, and farming. This has an impact on our
ecosystem. As the population of the world started to in-
crease, these two professions started to have an adverse im-
pact on our ecosystem as well. During the period between
1950 and 2015, United Nations Development Programme
(UNDP) estimated that the population in the cities jumped
from 54.6% to 78.3% (Un-Habitat 2016). With the stellar
growth of the population of world, humans are claiming
more and more land that originally belong to the forests to
develop cities, industries, and farms to meet the increasing
demands of residence, and food supply. Consequently, this
is causing the forests to shrink day by day causing wildfires
due to global warming. In this inexorable population surge,
monitoring the land-use is of utmost importance.

In order to learn about future planning and geography, it
is crucial to analyze construction and cultivation based on
spatial data from the past and present (Dadras et al. 2015).
We can gauge the disparity in land-use over time by utiliz-
ing satellite imagery via spatio-temporal analysis. Satellite
imagery can account for the destruction brought about by
war, deforestation, and natural disasters. For this purpose,
we need to design a system that can intelligently recognize
and categorize the geographical change in land-use or land-
cover. Fortunately, now we can analyze even large-scale pa-
rameters worldwide because of the recent trend and develop-
ment in high-resolution satellite imagery and machine learn-
ing, especially due to Deep Convolutional Neural Networks
(CNNs).

Deep learning, particularly CNNs have in the recent past
revolutionized many machine learning tasks. Examples in-
clude image classification (Krizhevsky, Sutskever, and Hin-
ton 2017; Li et al. 2019; Zhang et al. 2019b), video process-
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Figure 1: Spatio-Temporal driven Attention Graph Neural Network with Block Adjacency matrix (STAG-NN-BA).

ing (Sharma et al. 2021; Sreenu and Durai 2019), speech
recognition (Laux et al. 2023; Zhang et al. 2022), and nat-
ural language processing (Zhu et al. 2022; Lucic et al.
2022). These applications are usually characterized by data
drawn from Euclidean space. However, measurements over
the surface of the earth are inherently non-euclidean in na-
ture due to its irregular and changing shape and its high
mountains and deep ocean trenches. Data from such non-
euclidean space can be represented as graphs (Kipf and
Welling 2016; Bliss and Schmidt 2013; Velickovic et al.
2017) so as to capture the complex relationships and inter-
dependency between objects. Recently, many studies on
extending deep learning approaches for graph data have
emerged (Henaff, Bruna, and LeCun 2015; Defferrard, Bres-
son, and Vandergheynst 2016; Jain et al. 2016; Kipf and
Welling 2016; Wang et al. 2018; Satorras and Estrach 2018;
Narasimhan, Lazebnik, and Schwing 2018; Hu et al. 2018;
Gu et al. 2018; Wang, Ye, and Gupta 2018; Lee et al.
2018; Qi et al. 2018b; Marino, Salakhutdinov, and Gupta
2016; Kampffmeyer et al. 2019; Edwards and Xie 2016;
Liu et al. 2020; Fey and Lenssen 2019; Wan et al. 2019;
Qi et al. 2018a; Zhou and Chi 2019; Zhang, Campbell, and
Gould 2020; Tompson et al. 2014). For instance, graph neu-
ral networks (GNNs) have been increasingly used for ap-
plications such as molecule and social network classifica-
tion (Knyazev, Lin, and Mohamed 2018) and generation (Si-
monovsky and Komodakis 2017), 3D Mesh classification
and correspondence (Fey et al. 2018), modeling behavior of
dynamic interacting objects (Kipf et al. 2018), program syn-
thesis (Allamanis, Brockschmidt, and Khademi 2017), rein-
forcement learning tasks (Bapst et al. 2019) and many other
exciting problems.

While the utility of graph neural networks for emerg-
ing applications is promising, the complexity of graph data
imposes significant challenges on many existing machine
learning algorithms. For instance, in the area of image pro-
cessing, the use of Graph Convolutional Networks (GCN)
is still limited to a few examples only (Kampffmeyer et al.
2019; Wang, Ye, and Gupta 2018; Lee et al. 2018). By
some carefully hand-crafted graph construction methods or
other supervised approaches, images can be converted to
structured graphs capable of processing by GCNs. In these
GNNs, each pixel of an image is considered as a graph

node (Edwards and Xie 2016) which is cumbersome and in
many cases unnecessary. Instead of learning from raw im-
age pixels, the use of ’superpixels’ addresses this concern
(Liang et al. 2016; Knyazev et al. 2019) and helps in re-
ducing the graph size and thereby the computational com-
plexity. The applications of Superpixels include saliency es-
timation (Zhu et al. 2014), optical flow estimation (Sevilla-
Lara et al. 2016), object detection (Yan et al. 2015), semantic
segmentation (Gadde et al. 2016), reduce input for subse-
quent algorithms (Fey and Lenssen 2019) and explainable
AI (Ribeiro, Singh, and Guestrin 2016).

In this paper, we propose a hybrid attention method to in-
corporate these relational inductive biases in remote sensing
data. Instead of classifying each pixel, we propose a method
based on Simple Linear Iterative Clustering (SLIC) image
segmentation and Graph Attention Network: GAT (Velick-
ovic et al. 2017) to detect socio-economic indicators from
remote sensing data. We first over-segment the image into
superpixels. These superpixels become the nodes of our
Graph Convolution Network (GCN). We then construct a re-
gion adjacency graph (RAG) where each superpixel is con-
nected to every other adjacent superpixel in the image, en-
abling information to propagate globally. Finally, we clas-
sify each RAG via Spatially driven Attention Graph Neural
Network (SAG-NN). We also propose an extension to our
SAG-NN for spatio-temporal data named as Spatio-temporal
Attention driven GNN (STAG-NN). Unlike, pixels or ob-
jects, superpixels are prone to change over time, to address
this problem we propose a STAG-NN with Block diagonal
Adjacency matrix (STAG-NN-BA) which enables us to in-
corporate both the spatial as well as temporal information
in a single time-varying graph. The main novelty of this
paper is the SAG-NN and STAG-NN-BA architectures for
the prediction of spatio-temporal transition classes (such as
construction, destruction, cultivation, and harvesting) from
remote sensing data. We also show this approach incurs less
computational cost compared with other deep learning meth-
ods. The details of our proposed approach, which is derived
from vanilla GAT (Velickovic et al. 2017), are presented in
Section 4.

In this paper, we propose a unified framework allow-
ing to generalize geometric deep learning to remote sens-
ing data and learn spatial and spatio-temporal features us-



ing superpixels. We improve the GAT scoring function to
overcome the following shortcomings in GATv1 (Velickovic
et al. 2017) and GATv2 (Brody, Alon, and Yahav 2021): 1)
In GATv1, the learned layers W and a are applied con-
secutively, and thus can be collapsed into the single linear
layer. 2) GATv2 (Brody, Alon, and Yahav 2021) performs
best for a complete bipartite graph. We improved the graph
attention scoring function by introducing the relational in-
ductive bias in data using neighborhood features aggrega-
tion as well as the ranking of attended nodes. Our proposed
approach achieves higher accuracy with less computing cost
than state-of-the-art graph neural network architectures.

3 Challenges
3.1 Heterogeneity in Remote Sensing Data
While considering a large geographic area, several inher-
ent complexities in satellite imagery make automated de-
tection of change in land-use a challenging task. This in-
cludes, but is not limited to, i) variations in imaging sensors,
ii) differences in construction design across the countries,
iii) dynamic surroundings and iv) variations in luminosity,
seasonal changes, and pollution levels, etc.

The heterogeneity of land surface covers, in particular,
poses a major challenge for the task of spatial and spatio-
temporal analysis. High resolution satellite imagery is draw-
ing much attention from researchers due to the fine spa-
tial details of land surface covers. Pixel-based classification
methods are hardly applicable for high-resolution remote
sensing images due to the high interior heterogeneity of land
surface covers. The separation between spectral signatures
of different land surface covers is more difficult due to the
abundant details in pixel-based classification (Zhang et al.
2019a). To deal with this challenge, we are using superpixel-
based classification which reduces the redundancy of the
spatial features of different ground objects. Details of other
challenges can be found in this paper (Nazir et al. 2020).

3.2 Representation of Images as Graphs
GNNs on images are characterized by unique challenges
with respect to their implementation. Most of the graph neu-
ral frameworks (Defferrard, Bresson, and Vandergheynst
2016; Edwards and Xie 2016; Liu et al. 2020) are designed
for dense representations such as pixel-based graphs. How-
ever, pixel based representation results in a large number of
nodes which increases both the compute as well as memory
costs. Since adjacent pixels are known to have similar in-
formation except at object boundaries, pixel based represen-
tation is not only cumbersome, but it is also highly redun-
dant. To address this concern superpixel and object-based
graphs have been extensively used in the literature (see Table
4 in Appendix). For subsequent processing, superpixels have
been widely used as an effective way to reduce the number
of image primitives.

The literature includes numerous methods for determin-
ing a superpixel based representation from an image, each
with different strengths and weaknesses. Recently, many
DNN-based methods to identify superpixels have been pro-
posed (Yang et al. 2020; Jampani et al. 2018). But the most

popular of practices in the GNN literature (on account of
generally good results and low compute complexity) are
SLIC (Achanta et al. 2012), Quickshift (Vedaldi and Soatto
2008) and Felzenszwalb (Felzenszwalb and Huttenlocher
2004). Details of these methods are presented in the follow-
ing subsections.

SLIC The SLIC (simple linear iterative cluster-
ing) (Achanta et al. 2012) algorithm simply performs
an iterative clustering approach in the 5D space of color
information and image location. The algorithm quickly
gained momentum and is now widely used due to its speed,
storage efficiency, and successful segmentation in terms of
color boundaries. However, the limitation of SLIC is that it
often captures the background pixels as shown in Fig. 2 –
Column 1, and therefore does not significantly help in data
reduction for the graph generation. But it performs better in
capturing built-up and grassy land from satellite imagery as
shown in Fig. 5 – Column 2.

Quickshift Quickshift (Vedaldi and Soatto 2008) is a rela-
tively recent 2D algorithm that is based on an approximation
of kernelized mean-shift (Comaniciu and Meer 2002). It seg-
ments an image based on the three parameters: ϵ for the stan-
dard deviation of the Gaussian function, α for the weighting
of the color term, and S to limit the calculating a window
size of S × S. Therefore, it belongs to the family of lo-
cal mode-seeking algorithms and is applied to the 5D space
consisting of color information and image location. One of
the benefits of Quickshift is that it actually computes a hi-
erarchical segmentation on multiple scales simultaneously.
As shown in Fig. 2 – Column 2, it does not capture back-
ground pixels and also reduces 30% of input data for the
graph generation. But it cannot segment built-up and grassy
areas perfectly as shown in Fig. 5 – Column 3.

Felzenszwalb This fast 2D image segmentation algorithm,
proposed in (Felzenszwalb and Huttenlocher 2004), has a
single scale parameter that influences the segment size. The
actual size and number of segments can vary greatly, de-
pending on local contrast. This segmentation appeared to be
less suitable in tests on a series of images, as its parame-
ters require a special adjustment, and consequently, a static
choice of this parameter leads to unusable results. As shown
in Fig. 2 – Column 3 and Fig. 5 – Column 1, it only captures
the pixels corresponding to the region of interest pixels but
performs poorly in graph generation procedure as shown in
Fig. 3 - Column 3.

SLIC Quickshift Felzenszwalb

Figure 2: Superpixel segmentation techniques on MNIST
digit: 9.



Figure 3: Region Adjacency Graphs (RAG) generation
from SLIC, Quickshift and Felzenszwalb superpixels re-
spectively.

Felzenszwalbs’s SLIC Quickshift C. Watershed

Figure 4: Superpixel segmentation techniques on image
from Asia14 dataset. Felzenszwalbs’s method and quickshift
cannot segment perfectly built-up and barren land due to in-
herent complexities in satellite imagery. On the other hand,
compact watershed poorly performed on grassy land. While
SLIC works perfectly on satellite imagery.

Satellite Image SLIC superpixels Adjacency matrix

Figure 5: RAG generation from SLIC superpixels on im-
age from Asia14 dataset (Satellite images courtesy Google
Earth).

Instead of grid-based placement as in images, superpixels
usually result in irregular representation depending upon im-
age content. Such irregular representation restricts the con-
struction of graph on spatio-temporal data. This work has
addressed this issue by proposing STAG-NN-BA which re-
solves the issue via a block adjacency matrix.

4 Proposed Methodology
The proposed methodology consist of following major steps:

• Generate a superpixel representation of the input images.
• Create a region adjacency graph (RAG) from the super-

pixel representation, by connecting neighbouring super-
pixels.

• Spatial Attention Graph Neural Network (SAG-NN)

from region adjacency graph (RAG) for spatial classifi-
cation.

• Spatio-temporal driven Graph Attention Neural Network
with Block Adjacency matrix (STAG-NN-BA) for clas-
sification of transitions or changes in land-use over time.

The following subsections discuss the proposed architec-
ture in detail.

4.1 Superpixel Segmentation

When we apply segmenation techniques on satellite im-
agery, SLIC (Achanta et al. 2012) performs better as com-
pared to Quickshift (Vedaldi and Soatto 2008), Felzen-
szwalb (Felzenszwalb and Huttenlocher 2004) and Compact
watershed (Neubert and Protzel 2014). As shown in Fig. 4
– Column 2, SLIC captures the color boundaries, and seg-
ments perfectly the built-up area and agricultural land. It
is more stable for satellite imagery as compared to other
segmentation techniques. The superpixel segmentation tech-
nique using SLIC (Achanta et al. 2012) provides an elegant
way to divide the satellite image into homogeneous regions
as shown in Fig. 4. We set the number of segments to 75
and compactness to 10. This resulted in approximately 75
superpixels per image and subsequently a graph of 75 nodes
instead of 65536 nodes in case of using raw pixel values of
remote sensing imagery.

4.2 Graph generation from superpixels

After using a superpixel segmentation technique, a Region
Adjacency Graph (RAG) is generated by treating each su-
perpixel as a node and adding edges between all directly ad-
jacent superpixels. Unlike MoNet (Monti et al. 2017), which
use K-Nearest Neighbours to form a connection between
nodes, in our graph G we formed connections based on im-
mediate adjacency only. Thus ours is a more compact graph
while the information from neighbours of neighbours can
still be incorporated in our case by using K-hop messaging
passing. Each graph node can have associated features, pro-
viding aggregate information based on the characteristics of
the superpixel itself. The regions obtained in the segmen-
tation stage are represented as vertices V and relations be-
tween neighboring regions are represented as edges E. The
search for the most similar pair of regions is repeated sev-
eral times per iteration and every search requires O(N) re-
gion similarity computations. The graph is utilized so that
the search is limited only to the regions that are directly con-
nected by the graph structure.

Figure 6: RAG Generation from a single geospatial image.



Figure 7: Generation of Temporal RAG from geospatial im-
ages of same geolocation from multiple years.

4.3 Spatial Attention Graph Neural Network
(SAG-NN)

We will start by describing a single message passing layer,
as the sole layer utilized throughout all of the GCN (Kipf
and Welling 2016) and GAT (Velickovic et al. 2017) archi-
tectures.

Consider a graph G(V,E), where V is set of n nodes and
E is the set of m vertices. G is specified as a set of nodes’
initial embeddings (input features): (−→x1,

−→x2, . . . ,
−→xn), and an

adjacency matrix ADJ, such that ADJi,j = 1 if i and j are
connected, and 0 otherwise. Consider node i’s initial embed-
ding (for step k = 0) is:

−→
h

(0)
i = −→x i,∀i ∈ V (1)

A graph convolutional layer at step k = 1, 2, . . . ,K then
computes a set of new node features (

−→
h1

k,
−→
h2

k, . . . ,
−→
hn

k),
based on the input features as well as the graph structure.
Every graph convolutional layer starts off with a shared fea-
ture transformation specified by a weight matrix W.

In general, to satisfy the localization property, we will de-
fine a graph convolutional operator as an aggregation of fea-
tures across neighbourhoods; defining Ni as the neighbour-
hood of node i (typically consisting of all first-order neigh-
bours of i, including i itself), we can define the output fea-
tures of node i as

−→
h

(k)
i = f (k)

(
W(k) ·

[ ∑
j∈Ni

C(k)−→h (k−1)
j +C(k)−→h (k−1)

i

])
(2)

where ∀i ∈ V and f (k) is an activation function. Each neigh-
bour can be assigned different importance as:

−→
h

(k)
i = f (k)

(
W(k).

[ ∑
j∈Ni

α
(k−1)
ij

−→
h

(k−1)
j +α

(k−1)
ii

−→
h

(k−1)
i

])
(3)

where ∀i ∈ V and
∑

j∈Ni
(.) is the weighted mean of

i’s neighbour’s embedding at step k − 1 and the attention
weights α(k) are generated by an attention mechanism A(k),
normalized such that the sum over all neighbours of each
node i is 1:

α
(k)
ij =

A(k)(
−→
h

(k)
i ,

−→
h

(k)
j )∑

w∈Ni
A(k)(

−→
h

(k)
i ,

−→
h

(k)
w )

, ∀(i, j) ∈ E (4)

In standard GAT (see eq. 3 & 4) αij is implicitly defined,
employing self-attention over the node features to do so.

This choice was not without motivation, as self-attention has
previously been shown to be self-sufficient for state-of-the-
art-level results on machine translation, as demonstrated by
the Transformer architecture (Vaswani et al. 2017).

Generally, we let αij be computed as a byproduct of an
attentional mechanism, a : RN × RN −→ R which com-
putes normalized coefficients αij across pairs of nodes i, j,
based on their features (see eq. 4).

In contrast, in GATv2, every node can attend to any other
node using scoring function shown in eq. 5.

−→
h

(k)
i = α

(k−1)
ij

[
f (k)

(
W(k) ·

∑
j∈Ni

−→
h

(k−1)
j +

−→
h

(k−1)
i

)]
(5)

The main problem in the standard GAT scoring function
(see eq. 3) is that the learned layers W and α are applied
consecutively, and thus can be collapsed into single linear
layer (Brody, Alon, and Yahav 2021). To fix this limitation in
our work, we then impose a relational inductive bias in data
using neighborhood features aggregation (see eq. 6 & 7). In
our proposed SAG-NN, the node i’s embedding at step k for
k = 1 is:

−→
h

(k)
i = f (k)

(
W(k).

[
AGGj∈Ni({

−→
h

(k−1)
j }),

−→
h

(k−1)
i

])
,

(6)
where ∀i ∈ V and AGG(.) is the aggregation of i’s neigh-
bour’s embeddings at step k − 1 and h

(k−1)
i is the node i’s

embedding at step k − 1. And node i’s embedding at step k
for k = 2, 3, . . . upto K is:

−→
h

(k)
i = f (k)

(
W(k).

[ ∑
j∈Ni

α
(k−1)
ij

−→
h

(k−1)
j +α

(k−1)
ii

−→
h

(k−1)
i

])
(7)

The proposed solution not only improves the aggregation
of features from neighbouring nodes, it also improves the
ranking of attended nodes (static attention) as shown in eq.
6 & 7.

Spatio-temporal Classification via SAG-NN-E Al-
though the proposed SAG-NN architecture is developed to
account for neighborhood features’ aggregation to learn
spatial land-use classes, we also extended it for spatio-
temporal classification. Given T time steps, our resulting
ensemble SAG-NN-E has T copies of SAG-NN, one for
each time step, connected in parallel. The ensemble has a
voting scheme that takes the spatial classification from each
SAG-NN and generates the spatio-temporal classification
(see Fig. 8). We used this ensemble as a baseline for
evaluation of our proposed Spatio-temporal driven Graph
Attention Neural Network which is discussed next.

4.4 Spatio-temporal driven Graph Attention
Neural Network with Block Adjacency matrix
(STAG-NN-BA)

Images having multiple channels such as in case of color
or multi-spectral images or sequence of multiple images
are usually represented as a spatio-temporal volume. These



Figure 8: Spatio-temporal Classificcation via SAG-NN-E.

patio-temporal volumes have fixed spatial dimension or pix-
els at each depth of the volume. However, when instead of
pixels, superpixels of images are used this result in different
dimension at each time step. Thus graph from superpixels of
each image from a sequence cannot be stacked together as
in case of pixel based representation. Furthermore, in GNNs
the structure of the graph remains unchanged over multi-
ple layers, only the node representation changes (Kipf and
Welling 2016). This restricts the use of GNNs for spatio-
temporal classification problems having varying nodes over
time.

We addressed this problem by proposing a novel
temporal-RAG that connects the individual RAG from each
image. To incorporate the temporal change in graphs, we
add the fourth dimension in the node features of these RAGs
which is basically a numeric index that indicates the chrono-
logical order of the image the superpixel belongs to. We then
combine the RAGs of these separate images into a super-
graph that has these RAGs as unconnected subgraphs, we
call this supergraph Temporal-RAGs. Figure 7 depicts the
creation of Temporal-RAGs from Images of a geo-location
from different years. Our proposed temporal-RAG is an ex-
tension of our SAG-NN architecture. The supergraph of
SAG-NN’s is generated by combining the adjacency ma-
trices from each RAG into a single adjacency matrix (see
Figs. 7). This results in a block diagonal adjacency ma-
trix for Temporal-RAGs resulting in Spatio-temporal driven
Graph Attention Neural Network with Block Adjacency ma-
trix (STAG-NN-BA) defined as:

−→
h

(k)
i = ReLU

(
W(k).

[ ∑
j∈Ni

α
(k−1)
ij

−→
h
(k−1)
j + α

(k−1)
ii

−→
h
(k−1)
i

])

++ReLU
(
W(k).

[ ∑
j∈Ni

α
(k−1)
ij

−→
h
(k−1)
j + α

(k−1)
ii

−→
h
(k−1)
i

])

++ReLU
(
W(k).

[ ∑
j∈Ni

α
(k−1)
ij

−→
h
(k−1)
j + α

(k−1)
ii

−→
h
(k−1)
i

])

(8)

where ++ symbol represent the concatenation of features.
In STAG-NN-BA we aggregate the node embedding from

all the RAGs into one graph embedding XG of length D.
Then, we feed that embedding to the Multi-Layer Percep-
tron (MLP) for assigning one of the final transition classes.

Our proposed architecture allows to impose relational in-
ductive bias in data using neighborhood features aggrega-
tion over space as well as time resulting in a single archi-
tecture for data with a varying number of nodes over time
(see Fig. 1). Thus it can be used to classify the transitions
or change in land-use over time in the remote sensing data.
Since transitions are essentially temporal phenomena, the
proposed STAG-NN-BA method can incorporate temporal
information into regional adjacency graphs. We believe that
this method can be extended to other geometric data.

We do not assign features to the edges, since our model
uses an attention mechanism, and we believe that the edge
features will be learned according to the features of the
connecting nodes. STAG-NN-BA combine ideas of graph
convolutions (Kipf and Welling 2016), which allows graph
nodes to aggregate information from their irregular neigh-
bourhoods, with self-attention mechanisms (Vaswani et al.
2017), which allows nodes to learn the relative importance
of each neighbour during the aggregation process.

Although, there are many different models that try to
incorporate weights in neighborhood aggregation such as
SplineCNN (Fey et al. 2018) and GEO-GCN (Spurek et al.
2019). We used three approaches to perform a land-use tran-
sition classification of temporal images namely SAG-NN-
E (see section 4.3), Global Sum Pooling (STAG-NN-BA-
GSP) and Global Concatenated Pooling (STAG-NN-BA-
GCP). The last two are discussed as follows:

Global Sum Pooling (STAG-NN-BA-GSP): There exist
many different types of order-in-variant read-out layers in
the literature, such as Global Average Pooling (Lin, Chen,
and Yan 2013), Global Attention Pooling (Li et al. 2015),
Global Max Pooling (Lin, Chen, and Yan 2013), and Global
Sum Pooling (Li et al. 2015).

We use Global Sum Pooling (GSP) for it’s simplicity as
defined in the equation: xG =

∑
v∈V x

(L)
v , where V is the

set of vertices, x(L)
v is the node embedding at the last layer

of a graph neural network, and xG is the embedding for the
graph obtained as a result of the pooling operation.

Global Concatenated Pooling (STAG-NN-BA-GCP):
We are using RAGs of images from three different times-
tamps combined into one Temporal-RAGs for the transition
classification. Taking the graph readout in the last layers of
GAT using Global Sum Pooling (GSP) adding all the nodes
of the Temporal-RAGs into one n-dimensional vector. This
makes the embedding of a Temporal-RAG indistinguishable
from the embedding of a Temporal-RAG in which the un-
derlying RAGs were to swap places. To solve this problem,
we introduced a variation of GSP which gives us separate
embedding for each underlying RAG concatenated into one
n×D vector (see Fig. 1).

5 Results and Evaluation
5.1 Datasets
We used three datasets for evaluation of our proposed ap-
proch namely MNIST (LeCun et al. 1998), Asia14 (Nazir
et al. 2020) and C2D2 Dataset (Bhimra, Nazir, and Taj
2019). Both Asia14 and C2D2 datasets are remote sensing



Table 1: Spatial classification accuracy on pixel based Region Adjacency Graph (RAG) of MNIST (LeCun 1998) and subset of
Asia14 (Nazir et al. 2020) datasets. Top-2 ranking methods are in bold and, in particular, red (1st) and violet (2nd).

Architectures #Param (M) MNIST Asia14
Classical models of neural network on image dataset

Inception-ResNet-v2 (Szegedy et al. 2017) 23.50 - 57.70 %
2D-ResNet-50 (He et al. 2016) 23.50 - 56.45 %

Graph neural networks
MoNet (Monti et al. 2017) 2.12 91.11% 66.39%

ChebNet (Defferrard, Bresson, and Vandergheynst 2016) 12.85 75.62% 64.60 %
GATv1 (Velickovic et al. 2017) 25.70 96.19% 69.85 %

AGNN (Thekumparampil et al. 2018) 0.41 97.98% 47.80%
GraphSAGE (Hamilton, Ying, and Leskovec 2017) 12.85 97.27% 70.00%

Crystal GCN (Xie and Grossman 2018) 0.41 98.04% 63.20%
GATv2 (Brody, Alon, and Yahav 2021) 25.70 - 71.10%

SAG-NN (our) 25.69 98.14% 77.00%

Table 2: Spatial classification accuracy on SLIC superpixels based Region Adjacency Graph (RAG) of subset of Asia14 (Nazir
et al. 2020) datasets. Top-2 ranking methods are in bold and, in particular, red (1st) and violet (2nd).

Architectures #Param (M) Asia14
Classical models of neural network on image dataset

Inception-ResNet-v2 (Szegedy et al. 2017) 23.50 57.70 %
2D-ResNet-50 (He et al. 2016) 23.50 56.45 %

Graph neural networks
GCN (Kipf and Welling 2016) 0.015 9.78%

GraphSAGE (Hamilton, Ying, and Leskovec 2017) 0.015 65.00%
GATv1 (Velickovic et al. 2017) 0.030 80.30

GATv2 (Brody, Alon, and Yahav 2021) 0.055 72.04%
SAG-NN (our) 0.030 80.98%

datasets for spatial and spatio-temporal classification respec-
tively. These datasets are graph signal classification tasks,
where graphs are represented in mixed mode: one adjacency
matrix, many instances of node features. Details of these
datasets are discussed next.

MNIST Pixel-based Dataset The MNIST dataset (LeCun
et al. 1998) is an acronym that stands for the Modified Na-
tional Institute of Standards and Technology dataset. It is a
dataset of 28 × 28 pixel grayscale images of handwritten
single digits between 0 and 9. MNIST dataset containing
70, 000 pixel based region adjacency graphs as described
by (Defferrard, Bresson, and Vandergheynst 2016). Every
graph is labeled by one of 10 classes.

Asia14 pixel-based and Superpixels Dataset Asia14
dataset contains samples under varying conditions as dis-
cussed in Section 3.1. Furthermore, unlike street imagery,
land-use is subject to significant variations in satellite im-
agery. To cater for this, we used a subset of 14-class dataset
named Asia14 (Nazir et al. 2020). This dataset consisting of
Digital Globe RGB band images from 2016 and 2017 of res-
olution 256× 256 at zoom level 20 (corresponding to 0.149
pixel per meter on the equator). We used 9 classes including
brick kilns, houses, roads, tennis courts, grass, dense forest,
parking lots, parks. The issue of sensor variations is handled
by diversifying the training data across several spatial lo-
cations within the Indo-Pak region of South Asia. We have

9, 000 pixel-based region adjacency graphs and we gener-
ated the superpixels using SLIC (Achanta et al. 2012). Then
9, 000 graphs with 75 nodes each, were generated using re-
gion adjacency graph method.

C2D2 Dataset This dataset contains Spatio-temporal data
annotated for four fundamental land-use land-change transi-
tions namely construction, destruction, cultivation, and de-
cultivation. This dataset was originally collected and pre-
pared by (Bhimra, Nazir, and Taj 2019). They browsed Dig-
ital Globe imagery data for the years 2011, 2013, and 2017
and visited almost 5, 50, 000 random locations which make
approximately 5310 km2. Along with lat-long, at each lo-
cation, we cropped an image patch of resolution 256 × 256
at zoom level 20 (i.e. 0.149 pixel per meter on the equa-
tor). The provided dataset contained 3D volumes of Spatio-
temporal images from different years. we had to reverse the
process to separate out the individual images for a location
into the directories of each year. We then generate regional
adjacency graphs (RAG)s from the superpixels of these im-
ages that were generated using SLIC and use the same an-
notations as it was assigned to the 3D volumes.

5.2 Evaluation of SAG-NN
We evaluated our Spatial Attention Graph Attention Net-
work (SAG-NN) architecture on two datasets namely
MNIST and Asia14. We performed two experiments, in the
first experiment we generated pixel-based graphs and in the



Table 3: Spatio-temporal comparative evaluation for land-use transition classification on C2D2 dataset respectively. (Key: Acc.:
Accuracy, Par.: Parameters, M: Millions, FPT: Forward Pass Time in milliseconds for 100 forward passes). Top-2 ranking
methods are in bold and, in particular, red (1st) and violet (2nd).

Model # Par. (M) FPT (ms) Acc.
3D-ResNet-34 (Bhimra, Nazir, and Taj 2019) 63.50 ¿ 3.6 57.72 %

SAG-NN-E 0.030 3.60 ms 60.02 %
STAG-NN-BA-GCP (ours) 0.050 2.50 ms 64.90 %
STAG-NN-BA-GSP (ours) 0.030 2.62 ms 77.83 %

second experiment we used superpixel based graphs. We
performed comparisons with two classical methods namely
Inception-ResNet-v2 (Szegedy et al. 2017) and 2D-ResNet-
50 (He et al. 2016) and seven graph based state-of-the-art
methods namely MoNet (Monti et al. 2017), ChebNet (Def-
ferrard, Bresson, and Vandergheynst 2016), GATv1 (Velick-
ovic et al. 2017) , AGNN (Thekumparampil et al. 2018),
GraphSAGE (Hamilton, Ying, and Leskovec 2017), Crys-
tal GCN (Xie and Grossman 2018), GATv2 (Brody, Alon,
and Yahav 2021).

We first trained and validated our Spatial Attention Graph
Attention as well as all the other methods on MNIST dataset.
Our SAG-NN model achieved highest accuracy of 98.14%
on MNIST dataset with 25.69 million number of parame-
ters on pixel-based RAG. Then we trained and tested SAG-
NN as well as all the other methods on Asia14 dataset. Here
again our proposed SAG-NN achieved highest test accuracy
of 77.00% and 80.98% on pixel-based graph and superpixel
RAGs respectively (see Table 1 and 2).

In Table 1, the experiments show that the SAG-NN out-
performs on pixel-based RAGs as compared to other clas-
sical or RAG-based GNN classifiers. In Table 2, SAG-NN
has comparable training parameters and shows high accu-
racy when compared with GCN (Kipf and Welling 2016)
and GraphSAGE (Hamilton, Ying, and Leskovec 2017).
It shows comparable high accuracy when compared with
GATv1 (Velickovic et al. 2017). GATv2 (Brody, Alon, and
Yahav 2021) is proposed for bipartite graphs that’s why
it shows low performance on pixel-based and superpixel-
based region adjacency graphs as compared to our proposed
model.

5.3 Evaluation of STAG-NN-BA
We compared both the variants of our STAG-NN-BA with
two other methods namely 3D-ResNet-34 (Bhimra, Nazir,
and Taj 2019) and SAG-NN-E. SAG-NN-E is our exten-
sion of SAG-NN for spatio-temporal data and serves as
the baseline. 3D-ResNet-34 (Bhimra, Nazir, and Taj 2019)
on the other hand uses 3D convolution and is the only
state-of-the-art method with published results on C2D2
dataset. In order to compare our results on C2D2 dataset, we
used the same train/test split as in 3D-ResNet-34 (Bhimra,
Nazir, and Taj 2019). The ability of transition classifica-
tion for SAG-NN-E approach is dependent on the perfor-
mance of land-use classification and voting procedure (see
section 4.3). Both STAG-NN-BA-GCP and STAG-NN-BA-
GSP achieved significantly higher accuracies as compared
to SAG-NN-E and 3D-ResNet-34 (Bhimra, Nazir, and Taj

2019) in terms of accuracy and compute cost. STAG-NN-
BA-GCP and STAG-NN-BA-GSP achieved approximately
7% and 20% higher accuracy as compared to 3D-ResNet-
34. They also achieved 4.88% and 17.81% higher accuracy
as compared to SAG-NN-E which indicates the effective-
ness of our temporal model STAG-NN-BA as compared to
spatial model via SAG-NN. Furthermore, STAG-NN-BA-
GSP ourperforms all the other methods which shows that the
global sum pooling is a more suited method of aggregation
as compared to global concatenated pooling.

Table 3 also compares the training parameters, forward
pass time, and accuracy of our models used for spatio-
temporal land-use classification. It can be seen that the for-
ward pass time of STAG-NN-BA is almost 1ms lower as
compared to SAG-NN and much lower as compared to 3D-
ResNet-34.

In the land-use transition classification, the STAG-NN-
BA-GSP approach is the most reliable. However, we also
draw comparison of 3D-ResNet-34 (Bhimra, Nazir, and Taj
2019) with SAG-NN-E and STAG-NN-BA-GCP (see Ta-
ble 3). Both spatio-temporal proposed models (STAG-NN-
BA-GCP and STAG-NN-BA-GSP) achieved higher perfor-
mance with low computational cost on the C2D2 dataset.

6 Conclusion and Future work
This paper proposed two novel Graph Neural Network ar-
chitectures for spatial and spatio-temporal classification of
remote sensing imagery to gain a deeper understanding
of socio-economic indicators. We also proposed a novel
method to represent temporal information in images using
region adjacency graph called Temporal-RAG. We evalu-
ated our approaches on two remote sensing datasets namely
Asia14 and C2D2. The comparison with the previously ex-
isting classical and graph neural network methods showed
that our approaches achieved higher performance and re-
duced the computation power greatly. There are two areas
recognized while working on this paper that can serve as
interesting problems for future works. Firstly, there is an is-
sue of information loss during the generation of graphs from
superpixel segmentation. Secondly, over-segmentation of an
image to make superpixels causes information loss, which
decreases the representation power of pixels-based graphs.
The information about the shape of the underlying super-
pixel segment is lost. We can extract generic shape embed-
ding using an auto-encoder into a single N dimensional vec-
tor. While assigning the color values as features, this N -
dimensional shape embedding vector can be concatenated
into the initial features. This can help incorporate the shape



into graph representations.
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A Survey of Relevant Literature
Image Classification: Availability of high resolution satel-
lite imagery paved a way for future planning and geograph-
ical studies for large-scale analysis across the globe (Boyd
et al. 2018; Blumberg and Jacobson 1997; Huo et al. 2018;
LeCun, Bengio, and Hinton 2015; Xie et al. 2016; Nazir
et al. 2020). Automated large-scale surveys via remote sens-
ing often make use of image classification (Mehmood et al.
2022) and segmentation (Prakash et al. 2022; Raei et al.
2022). In this study, we are focusing on image classifica-
tion as it plays an important role in land-use land-cover ap-
plications. The generic problem of image classification con-
sists of distinguishing the images into object classes (usu-
ally, a set of predefined collection of labels). Traditional ap-
proaches followed the method of preprocessing images to
extract image features (e.g., texture, color, etc.) and running
a classifier on those features.

Krizhevsky et al.(Krizhevsky, Sutskever, and Hinton
2012) published a seminal study that explored deep neu-
ral networks for image classification. They won the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2012 by a large margin and set a turning point for im-
age classification research. In the following years networks
like GoogLeNet (Szegedy et al. 2015) and Squeeze-and-
Excitation (Hu, Shen, and Sun 2018) further helped in re-
ducing the top-5 error rate from 15.3% to just 2.51%. More
recent approaches, such as ViT-e (Zhai et al. 2021) and
CoAtNet-7 (Dai et al. 2021), combined convolution with at-
tention /transformers (Vaswani et al. 2017) and achieved a
top-1 accuracy of 90.45% and 90.88% respectively.

Despite the recent advances in datasets and network archi-
tectures, using standard convolutional kernels limits the ap-
plications of these networks in problems that do not present
a domain based on rectangular grids. For example, panora-
mas capture a whole 360-degree field of view, similalry,
measuerment on earth’s surface are geodesic in nature. To
handle these issues, some researchers suggested networks
designed to adapt to the spherical domain (Eder and Frahm
2019). In contrast, others proposed to learn how to adapt
convolutional layers to the spherical domain (Su and Grau-
man 2019). More recently, graph based methods have been
introduced so that such non-Euclidean spaces can be mod-
eled via geometric deep learning (Monti et al. 2017).

Geometric Deep Learning: Recently, there has been an
increasing interest in geometric deep learning (Monti et al.
2017), attempting to generalize deep neural models to non-
Euclidean structured domains such as graphs and manifolds.
Graph-based representations can be used to model a vari-
ety of problems and domains. Some examples include social
networks in computational social sciences, sensor networks
in communications, functional networks in brain imaging,
regulatory networks in genetics, and meshed surfaces in
computer graphics (Bronstein et al. 2017). In addition, they
naturally allow to model multi-resolution representations of
the same object. Furthermore, they naturally allow several
“multi-resolution” representations of the same object. The
same image can be converted to graphs using pixel-level or
superpixel-level representations. Superpixel-based represen-
tations reduce the input size while also allowing domains



such as pinhole and spherical images to be represented as
graphs, reducing computation costs needed for classifica-
tion. Furthermore, there are several recent advances toward
the development of Graph Neural Networks (GNNs) (Def-
ferrard, Bresson, and Vandergheynst 2016; Kipf and Welling
2016; Velickovic et al. 2017), including Graph Attention
Networks (Velickovic et al. 2017), which could bridge the
gap between different domains.

2011 2013 2017

Figure 9: Examples showing the change in land-use between
2011 and 2017. In all three examples, more and more land
was used for construction purposes over the years. See Sec-
tion C for a discussion on results. (Satellite images courtesy
Google Earth).

Image Classification via Graphs: To the best of our
knowledge, Monti et al.(Danel et al. 2020) proposed the
first application of Graph Neural Networks(GNNs) to im-
age classification and the MoNET framework for dealing
with geometric data in general. Their framework works by
weighting the neighborhood aggregation through a learned
scaling factor based on geometric distances. Velickovic
et al. (Velickovic et al. 2018) proposed a model using
self-attention for weighting the neighborhood aggregation
in GNNs. Although this model was a sub-model of the
MoNET framework, it provided extraordinary results on
other datasets, namely Cora and Citeseer, two famous cita-
tion networks (Sen et al. 2008), and on the FAUST humans
dataset (Bogo et al. 2014).

Although Shi and Malik’s seminal paper applied graph-
based methods directly to images by converting each pixel
to a graph node for image segmentation, smaller graphs can
be generated with lower-level representations. Each segmen-
tation region can be the natural choice for nodes of a graph
but generating accurate segmentation results is still an open
problem. Superpixels might be the middle ground between
pixel-based graphs and object-related region-based graphs.
Superpixels group pixels similar in color near each other
into meaningful representation units called segments (Stutz,
Hermans, and Leibe 2018). Several computer vision tasks
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Figure 10: Sample Annotations for four key transition
classes. (Row 1) Construction. (Row 2) Destruction. (Row
3) Cultivation and (Row 4) Decultivation. (Satellite images
courtesy Google Earth).

can be performed on these over-segmented images, includ-
ing depth estimation, segmentation, and object localization
as in (Achanta et al. 2012). The work mentioned above on
using GNNs for images, alongside the work on adapting
self-attention for GNNs and the works for generating super-
pixels of images, form the pillars on which we based our
experiments.

SplineCNN (Fey et al. 2018), and Geo-GCN (Danel et al.
2020) are two other models which extend MoNET frame-
works to weight neighborhood aggregation based on ge-
ometric information. SplineCNN leverages B-spline base
properties in their neighborhood aggregation procedure,
while Geo-GCN engineered a learned distance function to
perform data augmentation using rotations and conforma-
tions. Semi-supervised augmentation for classification is an-
other technique for using GNNs with image data as in (Jiang
et al. 2019). The main difference between their method is
that they extract a feature vector for each image with a con-
volutional network and then build a graph on which they
used their model. Although their technique is useful for
semi-supervised learning. We use the vanilla GAT based
classifier for a graph representing an image directly that is
not comparable.

B Implementation Details
All the graph neural networks are trained using PyTorch.
Optimization method is Adam with an initial learning rate
of 1e−3. The learning rate increases by 0.1 if validation loss



Table 4: Classification of proposals for graph generation from images

Graph Type Proposals
Pixel-based Graph (Defferrard, Bresson, and Vandergheynst 2016; Edwards and Xie 2016; Liu et al. 2020)

Superpixel-based Graph (Liang et al. 2016; Knyazev et al. 2019; Fey and Lenssen 2019; Liu et al. 2020; Wan et al. 2019)
Object-based Graph (Jain et al. 2016; Qi et al. 2018a; Zhou and Chi 2019; Zhang, Campbell, and Gould 2020; Jiang, Koppula, and Saxena 2013; Tompson et al. 2014)

Figure 11: Flow diagram of our proposed spatial attention graph neural network (SAG-NN). Images are first converted into
superpixels using SLIC, region adjacency graph is then constructed using these superpixels, finally spatial attention graph
neural network is applied. Graph embedding are then used for classification via MLP. (Satellite images courtesy Google Earth).

does not decline for 20 epochs. Instead of using fixed num-
ber of epochs, we used early stopping criteria and patience
for early stopping is 200. We have kept the same train, vali-
dation and test splits for all the datasets, i.e. 70%, 15%, and
15% respectively.

C Qualitative Analysis
Fig. 9 shows the sample annotations for Construction transi-
tion class. In Fig. 9 (Row 1), SAG-NN-E with voting mech-
anism classifies it as Cultivation which is clearly wrong as it
can be seen from the middle and last image that the land has
undergone the Construction. This type of misclassification
is expected from the model since there are two transitions in
three images of geolocation. The voting mechanism tends to
get confused when multiple transitions are present in an ex-
ample. But our proposed model ‘STAG-NN-BA-GSP’ cor-
rectly classifies it as Construction. In Fig. 9 (Row 2) our
all models: SAG-NN-E, STAG-NN-BA-GCP, and STAG-
NN-BA-GSP classify it as Construction. In Fig. 9 (Row 3),
SAG-NN-E and STAG-NN-BA-GSP correctly classify it but
STAG-NN-BA-GCP confused it with Destruction perhaps
because in this example one building is removed while mul-
tiple others were added.


