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Exploiting Transitivity of Correlation for Fast
Template Matching

Arif Mahmood, Sohaib Khan

Abstract—Elimination Algorithms are often used in template
matching to provide a significant speed-up by skipping portions of
the computation while guaranteeing the same best-match location
as exhaustive search. In this work, we develop elimination
algorithms for correlation-based match measures by exploiting
the transitivity of correlation. We show that transitive bounds can
result in a high computational speed-up if strong autocorrelation
is present in the dataset. Generally strong intra-reference local
autocorrelation is found in natural images, strong inter-reference
autocorrelation is found if objects are to be tracked across con-
secutive video frames and strong inter-template autocorrelation
is found if consecutive video frames are to be matched with a
reference image. For each of these cases, the transitive bounds
can be adapted to result in an efficient elimination algorithm.
The proposed elimination algorithms are exact, that is, they
guarantee to yield the same peak location as exhaustive search
over the entire solution space. While the speed-up obtained is
data dependent, we show empirical results of up to an order of
magnitude faster computation as compared to the currently used
efficient algorithms on a variety of datasets.

I. INTRODUCTION

Template matching is the process of evaluating the sim-
ilarity of a template image at each search location of a
larger reference image, to identify the best-match location. If
the search for the best-match location is done exhaustively
over the entire search space, the process is computationally
expensive. To reduce the computational cost while maintaining
the exhaustive equivalent accuracy, elimination algorithms
are often used, which may be categorized into two types:
complete elimination algorithms [1], [2], [3], [4] and partial
elimination algorithms [5], [6]. In complete elimination al-
gorithms, the actual similarity measure computation may be
skipped completely if an alternate suitability test indicates
that the current location cannot be the best-match location. In
case of partial elimination algorithms, the similarity measure
is partially evaluated at each search location but may be
terminated prematurely if the result of the partial computation
establishes the unsuitability of the current location as the
best-match location. In either case, by skipping computations,
elimination algorithms reduce the computational complexity
while guaranteeing that the result of the best-match location
will not be compromised.
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Elimination Algorithms have been well investigated for
match measures such as Sum of Squared Differences (SSD)
and Sum of Absolute Differences (SAD) (see for exam-
ple, [1], [2], [3], [4], [5], [6]). However, for correlation-
based measures, such as cross-correlation, Normalized Cross
Correlation (NCC) and correlation-coefficient, only limited
investigations of elimination algorithms are found in literature
[7], [8]. This is because of the fact that, the elimination
strategies developed for distance measures, are not directly
applicable to correlation measures. As a consequence, when
computational efficiency is of primary importance, correlation
measures are less frequently used. This is despite the fact
that correlation-coefficient, being invariant to brightness and
contrast variations, is more robust than SAD or SSD.

In this paper, we propose complete elimination algorithms
for correlation-based similarity measures including cross-
correlation, NCC and correlation-coefficient. The common
basis for each of the proposed elimination algorithm is the
notion of the transitivity of correlation. That is, if correlation
between image blocks r1 and r2 is known, and that between r2
and r3 is also known, what are the bounds on the correlation
between image blocks r1 and r3? We present the derivation of
these bounds and show how these bounds can be exploited, to
yield what we term as Transitive Elimination Algorithms.

In transitive elimination algorithms, the required matching
computations are divided into two types: Bounding Corre-

lations (for example correlation between r1 and r2 or that
between r2 and r3) and Bounded Correlations (for example
correlation between r1 and r3). Bounding correlations are only
a small fraction of the total computations, and have to be
computed in their entirety. However, bounded correlations,
which form the bulk of the computation, do not have to be
always computed. Most of the bounded correlations can be
skipped by using the transitive elimination algorithms.

In order to get good elimination performance, transitive
bounds should be tight enough. We find that, tight bounds
require at least one of the two bounding correlations to be
of large magnitude. This is ensured by exploiting different
forms of autocorrelation found in the dataset. Most of the
template matching applications exhibit strong autocorrelation
in one of the following three forms: strong intra-reference
autocorrelation, strong inter-reference autocorrelation or the
strong inter-template autocorrelation. To exploit each of these
types, we have proposed variants of transitive elimination
algorithms, all exploiting the same underlying principle.

1) Exploiting strong intra-reference autocorrelation [9]:

Most natural images are low-frequency signals, hence
exhibit high local spatial autocorrelation. Let r1 be the
template image, r2 be a reference image block and r3 be
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Fig. 1. Triangular inequality for the angular distance measure: (a) Image
blocks r1, r2 and r3 represented as vertices and the angular distance between
them is shown as edges of a triangle. (b) q1,3 depends upon the angle between
planes p and p0, fp,p0 . (c)-(d) q1,3 becomes maximum, q1,2+q2,3, when fp,p0 =
180� and becomes minimum, |q1,2 �q2,3|, when fp,p0 = 0�.

one of the spatially neighboring blocks of r2. Since local
autocorrelation of the reference image is high, r2 is often
highly correlated with each r3 block. If these correlations
are known, then correlating r1 with r2 yields maximum
and minimum bounds upon the correlation of r1 with
each r3. Using these bounds, unsuitable r3 blocks may be
eliminated from the search space, significantly reducing
the computations without causing any degradation of
accuracy.
The computation of the autocorrelation of r2 with each
of its neighbor r3 is an algorithmic overhead but it
is justified through high elimination of the subsequent
computations. Moreover, we also present an efficient
algorithm for the computation of local autocorrelation.
As a result, this algorithmic overhead turns out to be
insignificant as compared to the overall computations.

2) Exploiting strong inter-reference autocorrelation: Track-
ing an object in a surveillance video, checking for
missing components on a PCB production line or object
inspection over conveyor belts require one template
image to be correlated across multiple reference frames.
In such an application, the reference images are often
highly correlated with each other, because the camera
is often static, a fact which can be exploited for high
elimination. Let r1 be the template image and r2 be a
reference image block and r3 be one of the temporal
neighboring blocks, in another reference image. Since
inter-reference autocorrelation will be high, correlation
of r1 with r2 yields tight transitive bounds upon the
correlation between r1 and r3. Those r3 blocks for which
elimination test is found to be positive may be skipped
from computations without any loss of accuracy.

3) Exploiting strong inter-template autocorrelation [10]:

Certain applications require a set of template images

to be correlated with a single reference image, for
example, matching an aerial video with a satellite image
or exhaustive rotation-scale invariant template matching.
In such cases, if the set of templates has high autocor-
relation, correlation of one template with the reference
image yields tight bounds upon the correlation of all
other templates within the set.

The proposed algorithms are implemented in C++ and com-
pared with current known efficient algorithms including En-
hanced Bounded Correlation [8], Bounded Partial Correla-
tion [7], SAD [1], [6], FFT based frequency domain imple-
mentation [11] and an efficient spatial domain implementa-
tion [12]. Experiments are performed on a variety of real image
datasets. The exact speed-up of the proposed algorithms varies
from experiment to experiment, ranging from multiple times
to more than an order of magnitude.

II. TRANSITIVE INEQUALITY FOR CORRELATION BASED
SIMILARITY MEASURES

Let r1 and r2 be two image blocks, each of size m⇥n pixels,
and y1,2 be the cross-correlation between these blocks:

y1,2 =
m�1

Â
i=0

n�1

Â
j=0

r1(i, j)r2(i, j). (1)

r1 and r2 may also be considered as vectors in R m⇥n space.
Let q1,2 be the angular distance between these vectors. Using
the definition of scalar product, q1,2 can be related with cross-
correlation, y1,2:

q1,2 = cos�1 y1,2

||r1||2 ||r2||2
, (2)

where ||.||2 denotes the L2 norm. The angular distance is
symmetric, i.e. q1,2 = q2,1, and bounded between 0 � and 180 �.
In addition, the angular distance also follows the triangular
inequality of distance measures [10], that is for three image
blocks r1, r2 and r3 (Figure 1):

q1,2 +q2,3 � q1,3 � |q1,2 �q2,3|, (3)

where q1,3 is the angular distance between r1, r3 and q2,3 is
the angular distance between r2, r3. The minimum and the
maximum angular distance between r1 and r3 occurs when r3
lies in the same plane as r1 and r2 (Figure 1). Therefore the
upper and lower triangular bounds are also bounded between
0 � and 180 � and the triangular inequality may be written as:
min{360 � � (q1,2 +q2,3),(q1,2 +q2,3)}� q1,3 � |q1,2 �q2,3|.
We observe that the cosine function monotonically decreases
from +1 to -1 as q varies from 0� to 180�. Taking the cosine
of the triangular inequality, we get the basic form of the
transitive inequality for cross-correlation:

cos(q1,2 +q2,3) cos(q1,3) cos(q1,2 �q2,3). (4)

This may be rearranged using trigonometric identities as:

cosq1,2 cosq2,3 �
q

1� (cosq1,2)2
q

1� (cosq2,3)2  cosq1,3

 cosq1,2 cosq2,3 +
q

1� (cosq1,2)2
q

1� (cosq2,3)2 (5)
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Multiplying Equation (5) with (||r1||2 ||r2||2)(||r2||2 ||r3||2) and
simplifying using Equation (2), the transitive inequality in
terms of the cross-correlation measure y:

y1,2y2,3 +
q
(||r1||2 ||r2||2)2 �y2

1,2

q
(||r2||2 ||r3||2)2 �y2

2,3

(||r2||2)2

 y1,3 

y1,2y2,3 �
q
(||r1||2 ||r2||2)2 �y2

1,2

q
(||r2||2 ||r3||2)2 �y2

2,3

(||r2||2)2

(6)
This inequality provides transitive bounds on the cross-
correlation between r1 and r3, if the cross-correlation between
r1 and r2 and that between r2 and r3 is already known.

Cross-correlation is often used in its normalized form
to remove bias towards brighter regions. Normalized cross-
correlation between image blocks r1 and r2 is defined as:

f1,2 =
y1,2

||r1||2 ||r2||2
, (7)

The angular distance between two image blocks may also be
written in terms of f: q1,2 = cos�1(f1,2). Transitive inequality
given by Equation (5) gets modified for NCC as follows:

f1,2f2,3 +
q

1�f2
1,2

q
1�f2

2,3  f1,3 

f1,2f2,3 �
q

1�f2
1,2

q
1�f2

2,3 (8)

This inequality yields transitive bounds upon NCC between
image blocks r1 and r3, if the NCC between r1 and r2 and
that between r2 and r3 is already known.

NCC is robust to contrast variations, but it is not robust to
the brightness variations. A more robust measure, invariant to
any linear change in the signal, is the correlation coefficient:

r1,2 =
y1,2 �mnµ1µ2

||r1 �µ1||2 ||r2 �µ2||2
, (9)

where µ1 and µ2 are the means of r1 and r2 respectively.
Correlation-coefficient can also be written in terms of the
angular distance as: r1,2 = cos(q̂1,2), where q̂1,2 is the angular
distance between r1�µ1 and r2�µ2. The transitive inequality
in terms of q̂ can be derived by following the same steps as
that for q, and yields:

cos(q̂1,2 + q̂2,3) cos(q̂1,3) cos(q̂1,2 � q̂2,3). (10)

This can be expanded to the transitive inequality for the
correlation-coefficient:

r1,2r2,3 +
q

1�r2
1,2

q
1�r2

2,3  r1,3 

r1,2r2,3 �
q

1�r2
1,2

q
1�r2

2,3. (11)

Transitive bounds can also be derived by exploiting the rela-
tionship between correlation and distance measures other than
the angular distance. For example, we have derived transitive
inequality through Euclidean distance as shown in Appendix I.
However, we find that the bounds based upon angular distance
are tighter than the bounds based upon Euclidean distance
(see Appendices II and III for proof) and therefore more
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Fig. 2. Tightness of the transitive bounds: (a) Case 1: Both angles, q1,2 and
q2,3, have small magnitude. (b) Case 2: One angle is small and the other is
large. (c) Case 3: Both angles are large.

useful for elimination algorithms. In the next section, we will
show how the transitive bounds for correlation measures can
be exploited algorithmically, to speed-up different template
matching applications.

III. TRANSITIVE ELIMINATION ALGORITHMS

Transitive Elimination algorithms are developed to exploit the
transitive bounds for fast template matching. For a particular
search location, transitive bounds indicate the maximum and
the minimum limits upon correlation, which can be used to
discard unsuitable search locations. For example, at a specific
location, if the maximum limit is less than the correlation value
at some previous location, correlation computation becomes
redundant and may be skipped without any loss of accuracy.
As the percentage of skipped search locations increases, the
template matching process accelerates accordingly.

In order to compute the transitive bounds, three transitive
inequalities were presented in the last section, Equations (6),
(8) and (11). In each of these inequalities, there are two Bound-

ing Correlations which must be known in order to find bounds
upon the third Bounded Correlation. For example, in Equation
(11), r1,2 and r2,3 are the two bounding correlations which
constrain the upper and the lower limits upon the bounded
correlation r1,3. In a template matching problem, this concept
may be exploited for significant speed-up, by designing an
algorithm such that bounded correlations comprise a large
percentage of the total computations. Most of the bounded
correlations may be skipped if tight transitive bounds are
available.

The tightness of the transitive bounds depends upon the
magnitude of the two bounding correlations, and requires the
upper bound to be low and the lower bound to be high. This
dependency may be more clearly understood by considering
transitive inequalities in terms of angular distances as given
by Equations (4) or (10). In these equations, a tight upper
bound means cos(q1,2 � q2,3) having a value significantly
lesser than +1, which implies |q1,2 � q2,3| has a value sig-
nificantly larger than 0 �. Similarly, the lower bound will be
tight if cos(q1,2 + q2,3) has a higher value, which implies
that q1,2 +q2,3 should have a value close to 0�. Considering
different ranges of values which q1,2 and q2,3 may assume,
three possible cases are shown in Figure 2:

1) Case I: If both angles are small (Figure 2a), their
difference will be even smaller and their sum will also
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Fig. 3. Groups of Search Locations in Intra-Ref-TEA algorithm. A ‘search
location’ is the central pixel of a possible matching location of the template,
within the reference image. Small squares show 81 search locations divided
into non overlapping 3⇥3 groups. Each group has a central search location
shown in red and neighboring search locations shown in blue. The template
always has to be correlated with central locations while its correlation with
the neighboring locations may be eliminated based upon the transitive bounds.

be a relatively small number. Therefore both upper and
lower transitive bounds will approach +1. This ensures
tight upper and lower bounds because in this case, the
bounded correlation will also be very high.

2) Case II: If one angle is small while the other is large
(Figure 2b), then their difference will be large, resulting
in a tight upper bound, and their sum will also be a
relatively large number, resulting in a loose lower bound.

3) Case III: If both of the angles are large (Figure 2c),
then their difference will be a small number, resulting
in a very loose upper bound while their sum will be
a significantly larger number, resulting in a very loose
lower bound.

In these three cases, Case I yields tight upper and lower bounds
and can potentially be exploited for computation elimination.
However, practically, this case occurs infrequently because
it is less likely to get all of the three image patches to
be highly correlated. Case III yields loose upper and lower
bounds therefore this case cannot be exploited for compu-
tation elimination. Case II yields a tight upper bound, and
requires that one of the two bounding correlations has high
magnitude. Since in most of the template matching problems,
strong autocorrelation is present in one form or the other,
therefore choosing autocorrelation as one of the two bounding
correlations ensures that Case II occurs frequently.

For a standard single template and single reference matching
problem, local spatial autocorrelation of the reference may be
exploited to ensure one high bounding correlation, as required
by Case II. For a problem in which one template has to
be correlated with a sequence of reference images, temporal
autocorrelation of the reference images may be exploited.
Finally if a sequence of template images is to be correlated
with a single reference image, then temporal autocorrelation
of templates may be exploited to obtain speed-up. We discuss
these three cases in detail in the following subsections.

A. Exploiting Strong Intra-Reference Autocorrelation

Many template matching applications may require a single
template to be correlated with a single reference image. In
such applications, local spatial autocorrelation of the reference

image may be exploited for fast template matching. For this
purpose, we divide the search locations within the reference
image into non overlapping rectangular groups and compute
local autocorrelation (AS) of the central location with the
neighboring locations of the group (Figure 3).

In each group, the template image is correlated with the
central search location, to yield Central Correlation (CC) and
the correlation of the template with the remaining locations is
delayed until the evaluation of the elimination test. As shown
in Figure 3, both local autocorrelation and central correlation
are used as bounding correlations to compute transitive bounds
for the remaining locations, and those with upper bounds less
than a current known maximum (or less than a conservative
initial threshold) may be skipped, without any loss of accuracy.
Since the spatial autocorrelation with close neighbors is often
high for natural images, this results in a tight upper bound and
hence high elimination at most locations. Complete pseudo-
code for this algorithm is shown as Intra-Ref-TEA.

Algorithm 1 Intra-Ref-TEA
AS ( Local Spatial Auto-correlation
Cmax ( Initial correlation threshold
for all Groups of search locations do

CC ( correlate(template,central search location)
if CC > Cmax then
(Cmax, imax, jmax)( (CC, Central location indices)

end if
for all Remaining locations within current group do

UpperBound ( ASCC +
q
(1�AS

2)(1�CC
2)

if UpperBound < Cmax then
Skip current location

else
C ( correlate(template,current search location)
if C > Cmax then
(Cmax, imax, jmax) ( (C, Current location indices
)

end if
end if

end for
end for
print imax, jmax,Cmax

In Algorithm 1 the speed-up is obtained from bounded
correlations, shown as dotted arrows in Figure 3, whereas the
bounding correlations constitute an overhead for the algorithm.
There are two types of overheads: the computation of the
local spatial autocorrelation of the reference image and the
computation of the central correlation in each group. For
the first type, the standard implementation has computational
complexity of the order of O(mnpq) [9], where m ⇥ n is
the template size and p ⇥ q is the reference image size.
However, redundant computations can be eliminated by using
a more efficient algorithm, which reduces the computational
complexity to O(shsw pq) (as discussed later in this section),
where sh ⇥ sw is the size of the group of locations.

For the overhead due to central correlation, we observe that
at least one correlation is a must for each group. Since the
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number of groups are pq/shsw, and one correlation of the
template of size m⇥ n is must for each group, the overhead
cost is given as O(mnpq/shsw). The total overhead for both
types can be written as the summation of the two overheads:

h = x(shsw +
mn

shsw

)pq, (12)

where x is a machine dependent constant. If k templates
are to be matched with the same reference image, the local
autocorrelation overhead is further amortized to yield a total
overhead of

h = x( shsw

k
+

mn

shsw

)pq, (13)

Assuming the cost of spatial domain template matching to
be xmnpq, a theoretical upper bound upon the speed-up of
Intra-Ref-TEA may be written as:

Speed-Up  mn

( shsw

k
+ mn

shsw
)
. (14)

As an illustration, if 10 templates each of size 64⇥64 pixels
are to be matched with a reference image (of any size) and the
group size is 5⇥5, the upper bound upon maximum achievable
speed-up over spatial domain is 24.624.

Equation (14) indicates that more speed-up is possible on
larger group sizes. However, on larger sizes the local auto-
correlation may decay down to a small value, hence reducing
the tightness of the transitive bounds and therefore resulting
in reduction in elimination. The proper choice of the group-
size parameter, therefore, depends upon the spread of the
local autocorrelation function in the reference image and the
magnitude of the known correlation maxima. The smallest size
of a symmetrical group is 3⇥3 search locations, which means
that the central search location will be correlated with its eight
neighbors only. Practically one may adapt to the proper group
size by observing the computation elimination. For sh ⇥ sw

group size, if percentage of eliminated computations approach
the maximum limit (shsw � 1)/(shsw)⇥ 100, the group size
may be increased to (sh + 1)⇥ (sw + 1). This is because,
approaching the maximum limit of elimination indicates that
the reference image may have a wider autocorrelation that
may allow even larger group size to get more speed-up. On
the other hand, if the computation elimination reduces to less
than ((sh � 1)(sw � 1)� 1)/((sh � 1)(sw � 1))⇥ 100, then the
size may be reduced to (sh �1)⇥ (sw �1).

As mentioned earlier, the computation of local autocorrela-
tion can be made more efficient than its standard implemen-
tation by exploiting the redundancy in its computation. We
propose an algorithm in which the correlation between central
location rc, and another location rn, is computed simultane-
ously over all groups, through pixel by pixel multiplication
of the reference image with its (wr,wc) translated version,
where (wr,wc) is the row, column difference between rc and
rn. Then using the running-sum approach, we compute the sum
of all m⇥n blocks in the product array, in just four operations
per block. This results in correlation of each search location
with a (wr,wc) translated location. We copy only the required
values in a final LA-Array as shown in LA-Algorithm. The
same process is repeated shsw times, and each time pq integer
multiplications and 4pq additions are done. Therefore the

Fig. 4. Exploiting strong inter-frame autocorrelation for fast template
matching in Inter-Ref-TEA. The template is fully correlated with only one
frame (shown red), while for the remaining frames transitive bounds are
computed.

overall complexity of this approach is O(shsw pq). In terms
of space, this algorithm requires additional storage of three
arrays: Pr, S f and LA, each of size equal to that of the reference
image.

Algorithm 2 LA-Algorithm
Iref ( Reference image
(m,n)( Template image size
(sh,sw)( Size of group of locations
for wr = 1 to sh do

for wc = 1 to sw do
for all pixels (i, j) in Reference-Image do

Pr(i, j)( Iref(i, j)Iref(i+wr, j+wc)
end for
S f (Running sum of all m⇥n patches in Pr

.Copy Only Required Values From S f to LA-array
for all (i, j) in final LA-array do

LA(i+wr, j+wc)( S f (i+m, j+n)
i ( i+ sh

j ( j+ sw

end for
end for

end for

B. Exploiting Strong Inter-Reference Auto-Correlation

In some template matching applications, for example tracking
objects across a video sequence, one template image has to
be correlated with multiple reference frames. If the reference
frames are highly temporally correlated, such as in the case
of a static surveillance camera, we can exploit their temporal
autocorrelation (AT ) to get tight transitive bounds. The concept
is illustrated in Figure 4. In this case, the central correlation
(CC) is obtained by correlating the template with a specific
reference frame. The correlation with the remaining frames is
delayed until evaluation of the transitive elimination test.

Using AT and CC as bounding correlations, we compute the
transitive upper and lower bounds upon all search locations
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in the remaining frames. The locations with upper bound less
than the current known maximum (or an initial correlation
threshold), may be discarded without any loss of accuracy.

In some applications, for example checking for missing
components in a circuit board manufacturing facility, the three
image patches may be very similar. Therefore we may get
both upper and lower bounds to be tight as given by Case I.
In such applications, search locations where the upper bound
is less than the maximum of the lower bound, may also be
skipped without any loss of accuracy. The pseudo code for
this algorithm is given as Inter-Ref-TEA.

This algorithm carries the overhead of computing the tem-
poral autocorrelation of the sequence of reference frames. We
employ a similar strategy as in the previous case and compute
this overhead in O(pq), where p⇥ q is size of the reference
image. This is done by multiplying, pixel by pixel, the two
reference frames and then using the running sum approach
to compute the summation of all patches of size m ⇥ n

in the product array. Since the complexity of running sum
algorithm is O(pq) and pq integer multiplications were carried
out, overall complexity of this overhead is O(pq), which is
significantly smaller than even the complexity of a single
template correlation in O(mnpq). Hence the computational
cost of inter frame autocorrelation computation is insignificant
compared to the over all cost of template matching.

Algorithm 3 Inter-Ref-TEA
fc ( Fully correlated reference frame
CC ( correlate( template, fc)
print fc, imax, jmax,max(CC)
for all remaining frames, fk do

AT ( Autocorrelate fc with fk

Lmax ( Maximum of lower bound over fk

Cmax ( Initial correlation threshold
if Lmax >Cmax then

Cmax = Lmax
end if
for all Search locations in fk do

UpperBound ( ATCC +
q
(1�AT

2)(1�CC
2)

if UpperBound < Cmax then
Skip current location

else
C ( Correlate template with current Location
if C >Cmax then

(Cmax, imax, jmax)( (C, Current location indices )
end if

end if
end for
print fk, imax, jmax,Cmax

end for

C. Exploiting Strong Inter-Template Auto-Correlation

In some template matching applications, for example reg-
istration of an aerial video with a satellite image [13], a
sequence of template frames is to be correlated with the
same reference image. In such applications, if consecutive

Fig. 5. Exploiting strong inter-template autocorrelation for fast template
matching in Inter-Template-TEA.

template frames exhibit strong inter-template auto-correlation,
the transitive bounds may be used to speed-up the template
matching process. For this purpose, we divide the sequence of
template frames into groups such that all templates within each
group exhibit strong autocorrelation A

0
T

with the temporally
central frame. One such group of templates is shown in Figure
5, in which the central correlation CC is obtained by correlating
the central template with the reference image. Then using A

0
T

and CC as bounding correlations, we compute the transitive
bounds upon the correlation of each remaining template in
the group. All match locations with upper transitive bounds
less than the current known maximum or an initial correlation
threshold, may be discarded without any loss of accuracy.

In large template video sequences, the temporal autocorrela-
tion may significantly vary over time, requiring different group
lengths. To find the appropriate group length at runtime, we
adapt the length of the current group using the percentage com-
putation elimination results of the previous group. Let actual
elimination obtained in the k�1st group be e

k�1
act , and the max-

imum possible elimination be e
k�1
max = (L[k�1]� 1)/L[k�1],

where L[·] denotes the length of a group. If both of these
eliminations are close to each other, then autocorrelation may
be under utilized and the group length may be increased, while
if e

k�1
act is significantly less than e

k�1
max, then autocorrelation is

less than expected, therefore group length, should be decreased
for the next group:

L[k] =

8
><

>:

L[k�1]+2, if e
k�1
max � e

k�1
act < dl

L[k�1]�2, if e
k�1
max � e

k�1
act > dh

L[k�1], otherwise
(15)

where dl and dh are low and high thresholds upon elimination.
The only overhead in this algorithm is the computation of

inter-template autocorrelation which is of the order of O(mn),
where m⇥n is the template size. The cost of this overhead is
negligibly small as compared to the overall computations.
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(a) Satellite Image 
(SI) Dataset 

(b) Two Circuit Boards 
(TCB) Dataset 

(c) Circuit Board (CB) Dataset 

(d) Aerial Image (AI)   Dataset 

Fig. 6. Four datasets used for experiments on exploiting intra reference
autocorrelation. See Table I for more dataset details.

IV. EXPERIMENTS AND RESULTS

We have performed extensive empirical evaluation of the
three types of template matching problems described in the
previous section. Our experiments are done on ten different
datasets, consisting of 424 reference images and 8465 tem-
plates. The size of reference images ranges from 240 ⇥ 320
to 1394⇥2194 pixels, while the smallest template is 16⇥8 and
the largest 128⇥128 pixels. None of the templates is generated
by simply cropping the reference image; rather, each template
is from an independently captured image, containing natural,
and in some cases, synthetically generated distortions.

The proposed algorithms are implemented in C++ and
compared with the currently known fast exhaustive template
matching techniques including FFT-based frequency domain
implementation [14], Zero-mean Bounded Partial Correla-

tion (ZBPC) [7], Zero-mean Enhanced Bounded Correla-

tion(ZNccEbc) [8] and an exhaustive spatial domain imple-
mentation (Spat) [12]. We have implemented ZBPC algorithm
and all experiments are carried out with the correlation area of
20% and bound area of 80% [7]. Implementation of ZNccEbc
algorithm was provided by the original authors [8]. Other than
correlation based measures, we have also implemented Sum of
Absolute Differences with Partial Distortion Elimination [6]
and Successive Elimination Algorithm [1] optimizations.

In order to ensure a realistic comparison, we have used only
sequential implementations of all algorithms. The execution
times are measured on an IBM machine with Intel Core
2 CPU 2.13 GHz processor and 1GB RAM. The datasets,
implementation and detailed results are available on our web
site: http://cvlab.lums.edu.pk/tea.

A. Exploiting Intra-Reference Auto-correlation

Experiments corresponding to Section III-A are performed
on four datasets: Satellite Images (SI) dataset, Aerial Images
(AI) dataset, Circuit Board (CB) dataset and Two Circuit
Boards (TCB) dataset (see Table I and Figure 6). The images

TABLE I
DATASET DESCRIPTION FOR EXPERIMENTS WITH INTRA-REF-TEA

Dataset Template Sizes Total Reference
a b c Frames Size

SI 64⇥64 112⇥112 128⇥128 711 800⇥1000
TCB 34⇥34 51⇥51 68⇥68 579 807⇥1716
CB 16⇥8 24⇥12 32⇥16 328 762⇥1000
AI 95⇥95 97⇥97 99⇥99 171 1453⇥1548

TABLE II
TOTAL EXECUTION TIME IN SECONDS TAKEN BY INTRA-REF-TEA AND

OTHER ALGORITHMS UPON DATASETS DESCRIBED IN TABLE I

Dataset IR-TEA ZBPC ZNccEbc FFT SAD Spat
AI.a 108.89 1176.6 306.91 368.05 460.89 2375.9
AI.b 141.61 1604.3 632.19 474.49 625.14 3099.4
AI.c 185.53 2194.7 413.00 639.87 812.38 4207.8
CB.a 9.71 24.14 29.34 193.07 1.45 35.62
CB.b 17.14 51.86 28.76 188.03 2.91 70.66
CB.c 26.58 81.72 31.94 191.25 5.87 118.58

TCB.a 63.80 675.70 249.03 880.89 50.23 870.78
TCB.b 103.10 1426.0 263.64 848.97 130.38 1827.0
TCB.c 160.75 2499.5 278.67 838.24 267.31 3260.90

SI.a 352.68 2332.0 460.55 1307.5 5.13 2557.0
SI.b 449.84 5717.9 831.12 1152.7 12.13 6356.6
SI.c 465.31 6882.4 961.84 1108.9 15.76 7667.3

to be matched have projective distortions due to difference
in viewing geometry. In addition, the reference image of SI
dataset has very high brightness while the templates have low
brightness and contrast. In CB and TCB datasets, templates
and the reference images are taken from different boards. In AI
dataset, available from flicker.com under Creative Commons
license, templates and the reference are aerial images of the
same scene, taken from two different locations.

For the Intra-Ref-TEA algorithm, a group size of 5⇥ 5
was used for all datasets. For ZNccEbc algorithm, we used r =
8 where-ever possible; when the rows of the template were not
divisible by 8, all factors were tried and results were reported
for factor generating maximum speed-up. Therefore, r = 8 was
selected for SI and CB, 17 for TCB and 5, 97, 9 for AI(a, b,
c) datasets.

The speedup is dependent upon the initial threshold value,
which may be specified by the user or estimated by several
approaches, such as the coarse-to-fine technique [15], two
stage template matching [16], three-step search [17] or two
dimensional logarithmic search [18]. However, to keep the
analysis focused on the current problem, we used a uniform
initial threshold of r = 0.8 for all algorithms. The execution
time, reported in Table II, includes the local autocorrelation
overhead, which is {1.463s, 0.270s, 0.505s, 0.963s} for AI,
CB, SI and TCB datasets respectively.

TABLE III
INTRA-REF-TEA: EFFECT OF GROUP SIZE PARAMETER (GRSZ) UPON

EXECUTION TIME (SEC) AND PERCENT COMPUTATION ELIMINATION (%E)

GrSz 3⇥3 5⇥5 7⇥7 9⇥9
DSet T %E T %E T %E T %E
AI.a 7.01 87.2 2.74 95.1 2.99 94.6 4.69 91.4
CB.c 0.18 85.3 0.24 80.3 0.25 79.2 0.27 77.3

TCB.c 2.04 88.8 0.86 95.4 0.96 94.8 1.79 90.1
SI.c 3.23 88.9 1.24 95.8 1.13 96.1 1.6 94.4
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(a)  (b) 

(c)  

Fig. 7. (a) Pedestrian dataset: four reference frames and 9 feature templates.
(b) Cyclist dataset: four reference frames and 5 feature templates. (c) Fast
Component Tracking (CT) dataset: 3 reference frames and 5 templates [19].

TABLE IV
DATASET DESCRIPTION FOR FAST FEATURE TRACKING/FAST COMPONENT

TRACKING EXPERIMENTS

Dataset # of Feat. Feat. Size # of Frames Frame Size
PED 21 23 ⇥ 11 325 240 ⇥ 320
CYC 5 17 ⇥ 17 38 240 ⇥ 320
CT.a 6 63 ⇥ 63 16 479 ⇥ 640
CT.b 1 178 ⇥ 62 16 479 ⇥ 640
CT.c 1 136 ⇥ 104 16 479 ⇥ 640
CT.d 1 147 ⇥ 63 16 479 ⇥ 640
AT 20 95 ⇥ 95 25 1453 ⇥ 1548

The execution time speed-up of Intra-Ref-TEA over other
algorithms is dataset dependant. Maximum observed speed-
up over ZBPC is 15.549 times, over ZNccEbc is 4.464, over
FFT is 24.626 and over Spat is 22.680 times. Intra-Ref-TEA
has remained faster than other correlation coefficient based
algorithms, while for CB and SI datasets SAD has exhibited
highest speed. However SAD exhibits poor accuracy over these
datasets, due to brightness and contrast variations. For SI, none
of the templates matched at the correct location, while for
CB, only 25 of 328 templates matched correctly. Whereas,
the accuracy of all correlation coefficient based algorithms has
remained 100%.

Over a portion of the four datasets, variation of % computa-
tion elimination and average execution time per template has
been studied by varying the group size parameter to {3⇥3,
5⇥5, 7⇥7 and 9⇥9} (see Table III). The datasets AI.a and
TCB.c have shown the best performance at group size of
5⇥5 while CB.c and SI.c performed best at 3⇥3 and 7⇥7,
respectively. Thus by tuning the group size parameter, speed-
up reported in Table II may further be improved for CB and
SI datasets, even though all experiments reported in Table II
are for 5⇥5 group size.

B. Exploiting Inter-Reference Auto-correlation

1) Experiment on Fast Feature Tracking: In this experi-
ment, manually extracted features are tracked across Pedes-
trian (PED) and Cyclist (CYC) datasets. Both videos were
acquired in a typical surveillance scenario (see Table IV and
Figure 7). Both datasets contain dissimilarities produced by
human motion and illumination variations. Initial correlation
threshold is set to 0.70 for each of the algorithm. The pa-
rameter r in ZNccEbc is 23 for PED and 17 for CYC. The

TABLE V
TOTAL TIME IN SECONDS FOR DATASETS DESCRIBED IN TABLE IV FOR

INTER-REF-TEA AND OTHER ALGORITHMS

Data IRTEA ZNccEbc ZBPC FFT SAD Spat
PED 58.30 548.61 340.38 268.91 110.27 374.51
CYC 1.50 14.04 10.72 22.61 3.03 11.1
CT.a 12.76 65.90 198.50 166.08 86.27 263.45
CT.b 4.06 27.92 82.05 27.59 49.53 88.53
CT.c 3.31 29.88 101.64 27.69 73.47 125.72
CT.d 2.05 8.62 57.70 27.72 38.08 81.68
AT 223.43 5235.1 22668 4171.3 6105.7 27099

TABLE VI
PERCENTAGE COMPUTATION ELIMINATION IN INTER-REF-TEA AND

OTHER ELIMINATION ALGORITHMS

Dataset IR-TEA ZNccEbc ZBPC SAD
PED 80.496 93.839 12.571 75.583
CYC 93.749 89.607 8.451 77.259
CT.a 92.250 97.691 24.957 69.192
CT.b 88.150 93.047 8.103 49.063
CT.c 91.029 98.631 19.751 43.889
CT.d 93.162 99.560 29.585 57.397
AT 95.755 98.947 17.733 78.318

total execution time for the Inter-Ref-TEA given in Table V,
includes all overheads.

In these experiments Inter-Ref-TEA remained signifi-
cantly faster than other algorithms. The maximum speed-up
over ZBPC is 7.15 times, over ZNccEbc is 9.41, over FFT is
15.07, over SAD is 2.02 and over Spat is 7.40 times. The slow
execution times for the ZNccEbc algorithm is due to unfavor-
able template sizes, which increases the bound computation
overhead. Percentage of eliminated computations is reported
in Table VI. For the PED dataset the ZNccEbc algorithm has
obtained maximum elimination, while for the CYC dataset
Inter-Ref-TEA has obtained highest elimination.

2) Experiment on Fast Component Tracking: In this dataset
there is no local motion and the component templates are
significantly larger in size as compared to the feature tem-
plates. Two types of datasets are used: Component Tracking
(CT) and Aerial Tracking (AT) (see Figure 7 and Table IV).
Original images in CT were taken from [19] and AT dataset
is a portion of the AI dataset used in Subsection IV-A. The
following frame to frame variations were synthetically pro-
duced: affine photometric variations, non-linear photometric
variations, complementing, sharpening by edge-enhancements
and geometrically transforming the original images.

Initial correlation threshold of 0.70 has been used for
all algorithms. The central correlations in Inter-Ref-TEA
has been computed by the FFT based implementation. For
ZNccEbc, the r parameter has been selected to be {7, 89,
8, 7, 5} for CT(a, b, c, d) and AT. For fast feature tracking
experiment, the percent computation elimination comparison is
shown in Table VI, in which ZNccEbc has obtained maximum
elimination. However, in the total execution times reported
in Table V, Inter-Ref-TEA has remained faster than all
algorithms. This is because the cost of bound computation in
ZNccEbc has exceeded the benefit obtained by elimination.
The maximum speed-up observed by Inter-Ref-TEA over
ZNccEbc algorithm is 23.43 times, over ZBPC is 101.46, over



IEEE TRANSACTIONS ON IMAGE PROCESSING 9

          

                                         

 

(a) (b) 

Fig. 8. Video geo-registration dataset: (a) DS1 (b)DS2. Reference images are
taken from earth.google.com and templates from terraserver.microsoft.com.

TABLE VII
DATASET DETAILS USED FOR VIDEO GEO-REGISTRATION EXPERIMENTS

Dataset # of Frames Frame Size Ref. Size Avg. rmax
DS1.a 734 64 ⇥ 64 736 ⇥ 1129 0.939
DS1.b 744 80 ⇥ 80 736 ⇥ 1129 0.961
DS1.c 694 96 ⇥ 96 736 ⇥ 1129 0.963
DS1.d 641 112 ⇥ 112 736 ⇥ 1129 0.961
DS1.e 594 128 ⇥ 128 736 ⇥ 1129 0.958
DS2.a 659 64 ⇥ 64 1394 ⇥ 2152 -0.935
DS2.b 645 80 ⇥ 80 1394 ⇥ 2152 -0.921
DS2.c 648 96 ⇥ 96 1394 ⇥ 2152 -0.874
DS2.d 632 112 ⇥ 112 1394 ⇥ 2152 -0.924
DS2.e 616 128 ⇥ 128 1394 ⇥ 2152 -0.794

FFT is 18.67, over SAD is 27.33 and over Spat is 121.29 times.

C. Exploiting Inter-Template Auto-correlation

1) Fast Video Geo-registration: These experiments are per-
formed on two datasets, DS1 and DS2 (see Table VII and Fig-
ure 8). The images to be matched contain dissimilarities due to
difference in imaging sensor and viewing geometry. Additional
dissimilarities were generated by reducing the dynamic range
of templates in DS1 to one third of the original range and the
templates in DS2 were contrast reversed. Contrast reversals
are frequently observed in practical situations, if matching is
to be done across infra-red and optical imagery.

The initial correlation threshold is 0.80 for DS1 and -0.85
for DS2. For ZNccEbc, r = 8 has been used. In IT-TEA, the
correlation of the central templates with the reference images
has been done by using the FFT based implementation and
length of the group of templates is initialized to 7 for DS1 and
5 for DS2. For the remaining groups, length was automatically

TABLE VIII
VIDEO GEO-REGISTRATION: AVERAGE EXECUTION TIME IN SECONDS PER

TEMPLATE FRAME

Dataset IT-TEA ZNccEbc ZBPC FFT SAD Spat
DS1.a 1.217 1.366 6.415 4.223 0.107 8.455
DS1.b 1.156 1.675 8.575 4.173 0.156 13.587
DS1.c 1.413 2.314 12.736 4.161 0.258 18.553
DS1.d 1.669 2.787 16.310 4.261 0.436 24.018
DS1.e 1.977 3.333 16.715 4.266 0.610 29.855
DS2.a 6.394 16.725 32.163 19.547 2.969 32.848
DS2.b 8.614 28.378 53.303 19.552 4.976 53.760
DS2.c 12.290 42.751 74.399 19.606 7.030 74.933
DS2.d 15.534 58.995 98.432 19.458 9.374 99.027
DS2.e 12.250 78.110 125.170 19.563 11.959 125.740

    
 
      
 
                                                             

 

    
         

Fig. 9. Rotation and Scale invariant template matching: Nine reference
images and 14 templates.

TABLE IX
ROTATION AND SCALE INVARIANT TEMPLATE MATCHING: DATASET FOR

CHARACTER RECOGNITION

Letter Tmp. Size Ref. Size Letter Tmp. Size Ref. Size
a 19⇥14 679⇥889 o 18⇥17 671⇥1215
c 19⇥15 755⇥977 p 25⇥17 702⇥1206
e 17⇥15 552⇥1005 s 18⇥12 711 ⇥ 1224
g 26⇥16 593⇥1209 v 18⇥17 681 ⇥ 1271
i 25⇥8 907⇥1263 w 19⇥23 756 ⇥ 1341
k 25⇥17 684⇥1031 x 18⇥16 475 ⇥ 1463
m 18⇥24 647⇥1046 z 19⇥15 291 ⇥ 758

adapted by using dl = 3% and dh = 10% in Equation (15).
Average group length has remained {8.6, 10.9, 11.6, 12.1,
12.4} for DS1(a-e) and { 7.8, 7.2, 7.7, 8.2, 7.7} for DS2(a-e).

Execution time comparison of IT-TEA and other algorithms
is given in Table VIII. For DS1, maximum execution time
speed-up of IT-TEA over ZBPC is 9.77 times, over ZNccEbc
is 1.69, over FFT is 3.61 and over Spat is 15.10 times. For
DS2, maximum observed speed-up of IT-TEA over ZBPC is
10.22, over ZNccEbc is 6.38, over FFT is 3.06 and over Spat
is 10.26 times. Although SAD has remained faster than all
correlation coefficient based algorithms, it failed to match
any template at the correct location. High execution times of
ZBPC and ZNccEbc on DS2 can be attributed to the fact that
these algorithms have been developed to find only positive
maxima, where as in case of DS2 negative peaks have to be
searched. Transitive elimination algorithm does not require any
modification to search for negative peaks.

2) Fast rotation/scale invariant template matching: Con-
secutive rotated and scaled versions of an object are generally
highly correlated. We have used this correlation to speed-
up the exhaustive rotation/scale invariant template matching
by using IT-TEA. These experiments are performed upon
optical character recognition dataset using scanned pages from
multiple books. The template images consist of 14 individual
characters, which were extracted from one of the scanned
image (see Table IX and Figure 9). Each template is rotated
from -5� to +5� and scaled from -8% to +8% at a step
size of 2%, resulting in 99 rotated/scaled versions. All of
these rotated/scaled versions are exhaustively correlated with
each of the 14 reference images, with varying background
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TABLE X
ROTATION AND SCALE INVARIANT TEMPLATE MATCHING: TOTAL

EXECUTION TIME (IN SECONDS) FOR IT-TEA AND OTHER ALGORITHMS

Dataset IT-TEA ZNccEbc ZBPC FFT SAD Spat
a 43.06 1164.7 849.77 4975.6 322.97 836.80
c 41.20 1187.2 880.01 4769.8 372.29 891.00
e 40.12 1091.7 784.39 4808.9 308.02 807.84
g 50.37 974.53 1230.8 4761.0 516.43 1245.2
i 47.64 445.77 682.37 4804.7 253.40 679.14
k 45.45 643.08 1285.9 4756.3 578.13 1289.0
m 63.67 760.49 1250.7 5132.5 467.56 1311.3
o 42.67 699.70 921.67 4803.1 370.72 955.35
p 46.43 559.51 1286.8 4845.2 546.72 1288.7
s 38.01 680.66 712.88 4815.8 260.81 706.61
v 39.75 682.33 927.68 4829.8 387.66 954.36
w 45.21 1311.5 1264.9 5046.7 571.79 1322.9
x 41.85 733.22 878.91 4886.5 399.99 888.03
z 40.22 1219.6 900.72 4816.2 457.56 893.48

colors, arbitrary rotations, arbitrary scaling, aliasing effects
due to poor scanner resolution and with broken and irregular
character boundaries.

Out of 99 rotated/scaled versions of each template, only one
template (with zero rotation and unit scaling) is fully correlated
with the complete reference image while for all of the re-
maining templates, transitive bounds are computed. The initial
correlation threshold is set to 0.80. In ZNccEbc, partition pa-
rameter r is set to be: {19,19,17,13,5,5,9,9,5,9,9,19,9,19}
respectively for the 14 templates given in Table IX.

The total execution time including all overheads is shown
in Table X. The maximum execution time speed-up obtained
by IT-TEA is 28.29 times over ZBPC, 30.32 times over
ZNccEbc, 126.70 times over FFT, 12.67 times over SAD and
29.26 over Spat. On this dataset, the speed-up obtained by
IT-TEA over other algorithms is enhanced because of the small
template sizes and high autocorrelation between consecutive
rotated/scaled template versions.

D. Speed-Up Comparison of Correlation Measures

We compared the execution times and the computation elim-
ination performance of the three correlation based similarity
measures: cross-correlation, NCC and correlation-coefficient
on six datasets: DS1 (a, b, c, d, e) and PED. For DS1, IT-TEA
and for PED Inter-Ref-TEA has been used for comparison.
The total execution time and the average computation elimi-
nation per frame is reported in Table XI.

In these experiments we observe that cross-correlation is
the fastest of the three measures. NCC was found to be faster
than correlation coefficient over PED datasets while slower
on DS1 datasets. This may be because of the fact that NCC
is not robust to additive intensity variations and therefore
in the presence of such variations the magnitude of NCC
maxima may reduce, causing a reduction in elimination and
an increase in execution time. However, the relative speed-up
is data dependent and may vary for other datasets.

V. CONCLUSION

In this work, we have demonstrated that the transitive property
of correlation can be exploited for fast template matching.

TABLE XI
TOTAL EXECUTION TIME (T ) (SEC) AND AVERAGE PERCENT ELIMINATION

(E) FOR CROSS-CORRELATION (y), NCC (f) AND r

Dataset Ty Tf Tr Ey Ef Er
PED 23.614 45.75 58.318 99.36 82.24 80.5

DS1.a 213.66 967.32 732.12 95.13 75.4 83.21
DS1.b 316.42 1321.6 861.47 94.66 70.5 85.32
DS1.c 548.14 1387.9 980.37 92.56 71.42 85.79
DS1.d 777.27 1462.1 1069.9 89.13 72.34 86.29
DS1.e 931.09 1572.1 1174.4 85.26 72.6 86.49

Three variations of transitive elimination algorithms are pre-
sented to cater for different types of the template matching
problems. The proposed algorithms have exhaustive equivalent
accuracy and are compared with fast exhaustive techniques
on a wide variety of real image datasets. Our empirical
results based upon the correlation of 8465 templates with 424
reference images, demonstrate that the proposed algorithms
are faster than current techniques by a significant margin.

APPENDIX A
TRANSITIVE INEQUALITY BASED UPON EUCLIDEAN

DISTANCE

Considering three image blocks r1, r2 and r3, let Di, j be
the Euclidean distance between any two of them, where
i, j 2 {1,2,3}:

Di, j =

s
n

Â
x=1

m

Â
y=1

� ri(x,y)�µi

si

�
r j(x,y)�µ j

s j

�2
. (16)

Triangular inequality for Euclidean distance is given by:

|D1,2 �D2,3| D1,3  D1,2 +D2,3. (17)

Squaring all sides and using relationship from [9]:

ri, j = 1� 1
2

D2
i, j, (18)

we get Euclidean distance based transitive bounds upon cor-
relation coefficient:

(r1,2 +r2,3 �1)+2
q
(1�r1,2)(1�r2,3)� r1,3

� (r1,2 +r2,3 �1)�2
q
(1�r1,2)(1�r2,3). (19)

APPENDIX B
COMPARISON OF UPPER TRANSITIVE BOUNDS

Since 0  Di, j  2 and �1  ri, j +1, therefore inequalities

1� D1,2D2,3

4
� 1

2

q
(1+r1,2)(1+r2,3)� 0 (20)

and
D1,2D2,3 � 0, (21)

always hold. By multiplying these two inequalities:

D1,2D2,3
⇥
1� D2,3D1,2

4
� 1

2

q
(1+r1,2)(1+r2,3)

⇤
� 0, (22)

where:
D1,2D2,3 = 2

q
(1�r2,3)(1�r1,2). (23)
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From (22) and (23):

r1,2r2,3 +
q
(1�r2

1,2)(1�r2
2,3)

(r1,2 +r2,3 �1)+2
q
(1�r1,2)(1�r2,3) (24)

APPENDIX C
COMPARISON OF LOWER TRANSITIVE BOUNDS

Since 0  Di, j  2 and �1  ri, j +1, therefore inequalities

D1,2D2,3
⇥
1� 1

2

q
(1+r1,2)(1+r2,3)

⇤
� 0 (25)

and
r1,2r2,3 � (r1,2 +r2,3 �1)� 0, (26)

always hold. Adding these two inequalities and rearranging
the terms:

r1,2r2,3 �D1,2D2,3
1
2

q
(1+r1,2)(1+r2,3)

⇤

� (r1,2 +r2,3 �1)�D1,2D2,3, (27)

substituting the value of D1,2D2,3 from (23):

r1,2r2,3 �
q
(1� (r1,2)2)(1� (r2,3)2)

� (r1,2 +r2,3 �1)�2
q
(1�r1,2)(1�r2,3). (28)
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