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Template Matching
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Abstract

Elimination Algorithms are often used in template matching to provide a significant speedup by skipping

portions of the computation while guaranteeing the same best-match location as exhaustive search. In this work,

we develop elimination algorithms for correlation-based match measures by exploiting the transitivity of correlation.

We show that transitive bounds can result in a high computational speedup if strong autocorrelation is present in

the dataset. Generally strong intra-reference local autocorrelation is found in natural images, strong inter-reference

autocorrelation is found if objects are to be tracked across consecutive video frames and strong inter-template

autocorrelation is found if consecutive video frames are to be matched with a reference image. For each of these

cases, the transitive bounds can be adapted to result in an efficient elimination algorithm. The proposed elimination

algorithms are exact, that is, they are guaranteed to yield the same peak location as exhaustive search over the entire

solution space. While the speedup obtained is data dependent, we show empirical results of more than an order of

magnitude faster computation as compared to the currently used efficient algorithms on a variety of datasets.

I. INTRODUCTION

Template matching is the process of evaluating the similarity of a template image at each search location

of a larger reference image, to identify the best-match location. If the search for the best-match location

is done exhaustively over the entire search space, the process is computationally expensive. To reduce the

computational cost while maintaining the exhaustive equivalent accuracy, elimination algorithms are often

used, which may be categorized into two types: complete elimination algorithms [1], [2], [3], [4] and
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partial elimination algorithms [5], [6]. In complete elimination algorithms, the actual similarity measure

computation may be skipped completely if an alternate suitability test indicates that the current location

cannot be the best-match location. In case of partial elimination algorithms, the similarity measure is

partially evaluated at each search location but may be terminated prematurely if the result of the partial

computation establishes the unsuitability of the current location as the best-match location. In either case,

by skipping computations, elimination algorithms reduce the computational complexity while guaranteeing

that the result of the best-match location will not be compromised.

Elimination Algorithms have been well investigated for match measures such as Sum of Squared

Differences (SSD) and Sum of Absolute Differences (SAD) (see for example, [1], [2], [3], [4], [5], [6]).

However, for correlation-based measures, such as cross-correlation, Normalized Cross Correlation (NCC)

and correlation-coefficient, only limited investigations of elimination algorithms are found in literature

[7], [8]. This is because of the fact that, the elimination strategies developed for distance measures, are

not directly applicable to the correlation measures. As a consequence, when computational efficiency

is of primary importance, correlation measures are less frequently used. This is despite the fact that

correlation-coefficient, being invariant to brightness and contrast variations, is more robust than SAD or

SSD.

In this paper, we propose complete elimination algorithms for correlation-based similarity measures

including cross-correlation, NCC and correlation-coefficient. The common basis for each of the proposed

elimination algorithm is the notion of the transitivity of correlation. That is, if correlation between image

blocks r1 and r2 is known, and that between r2 and r3 is also known, what are the bounds on the correlation

between image blocks r1 and r3? We present the derivation of these bounds and show how these bounds

can be exploited algorithmically, to yield what we term as Transitive Elimination Algorithms.

In transitive elimination algorithms, the required matching computations are divided into two types:

Bounding Correlations (for example correlation between r1 and r2 or that between r2 and r3) and Bounded

Correlations (for example correlation between r1 and r3). Bounding correlations are only a small fraction

of the total computations, and have to be computed in their entirety. However, bounded correlations, which

form the bulk of the computation, do not have to be always computed. Most of the bounded correlations

can be skipped by using the transitive elimination algorithms.
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In order to get good elimination performance, transitive bounds should be tight enough. We find that,

tight bounds require at least one of the two bounding correlations to be of large magnitude. This is

ensured by exploiting different forms of autocorrelation found in the dataset. Most of the template

matching applications exhibit strong autocorrelation in one of the following three forms: strong intra-

reference autocorrelation, strong inter-reference autocorrelation or the strong inter-template autocorrelation.

To exploit each of these types, we have proposed variants of transitive elimination algorithms, all exploiting

the same underlying principle.

1) Exploiting strong intra-reference autocorrelation [9]: Most natural images are low-frequency signals,

hence exhibit high local spatial autocorrelation. Let r1 be the template image, r2 be a reference image

block and r3 be one of the spatially neighboring blocks of r2. Since local autocorrelation of the

reference image is high, r2 will be highly correlated with each r3 block. If these correlations are

known, then correlating r1 with r2 yields maximum and minimum bounds upon the correlation of

r1 with each r3. Using these bounds, unsuitable r3 blocks may be eliminated from the search space,

significantly reducing the computations without causing any degradation of accuracy.

The computation of the autocorrelation of r2 with each of its neighbor r3 is an algorithmic overhead

but it is justified through high elimination of the subsequent computations. Moreover, we also present

a very efficient algorithm for the computation of local autocorrelation, as a result this algorithmic

overhead turns out to be insignificant as compared to the overall computations.

2) Exploiting strong inter-reference autocorrelation: Tracking an object in a surveillance video, check-

ing for missing components on a PCB production line or object inspection over conveyor belts require

one template image to be correlated across multiple reference frames. In such an application, the

reference images are often highly correlated with each other, because the camera is often static, a

fact which can be exploited for high elimination. Let r1 be the template image and r2 be a reference

image block and r3 be one of the temporal neighboring blocks, in another reference image. Since

inter-reference autocorrelation will be high, correlation of r1 with r2 yields tight transitive bounds

upon r3. Those r3 blocks for which elimination test is found to be positive, may be skipped from

computations without any loss of accuracy.

3) Exploiting strong inter-template autocorrelation [10]: Certain applications require a set of template
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Fig. 1. Triangular inequality for the angular distance measure: (a) Image blocks r1, r2 and r3 represented as vertices and the angular

distance between them is shown as edges of a triangle. (b) µ1,3 depends upon the angle between planes º and º0. (c)-(d) µ1,3 becomes

maximum µ1,2 + µ2,3 when ¡º,º0 = 180 ± and minimum |µ1,2 ° µ2,3| when ¡º,º0 = 0 ±.

images to be correlated with a single reference image, for example, matching an aerial video with

a satellite image or exhaustive rotation-scale invariant template matching. In such cases, if the set

of templates has high autocorrelation, correlation of one template with the reference image yields

tight bounds upon the correlation of all other templates within the set.

The proposed algorithms are implemented in C++ and compared with current known efficient algorithms

including Enhanced Bounded Correlation [8], Bounded Partial Correlation [7], SAD [1], [6], FFT based

frequency domain implementation [11] and an efficient spatial domain implementation as described in [12].

Experiments are performed on a wide variety of real image datasets. While the exact speedup of the

proposed algorithms varies from experiment to experiment, we have observed speedups ranging from

multiple times to more than an order of magnitude.

II. TRANSITIVE INEQUALITY FOR CORRELATION BASED SIMILARITY MEASURES

Let r1 and r2 be the two image blocks, each of size m £ n pixels, and √1,2 be the cross-correlation

between these vectors:

√1,2 =
m°1X

i=0

n°1X

j=0

r1(i, j)r2(i, j). (1)
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r1 and r2 may also be considered as vectors in Rm£n space, and let µ1,2 be the angular distance between

these vectors. Using the definition of scalar product, µ1,2 can be related with cross-correlation, √1,2:

µ1,2 = cos°1 √1,2

||r1||2||r2||2
, (2)

where ||.||2 denotes the L2 norm. The angular distance is symmetric, µ1,2 = µ2,1, and bounded between 0 ±

and 180 ±. In addition, angular distance also follows the triangular inequality of distance measures [10],

that is for three image blocks r1, r2 and r3 (Figure 1):

µ1,2 + µ2,3 ∏ µ1,3 ∏ |µ1,2 ° µ2,3| (3)

where µ1,3 is the angular distance between r1, r3 and µ2,3 is the angular distance between r2, r3. The

minimum and the maximum angular distance between r1 and r3 occurs when r3 lies in the same plane as

r1 and r2. Therefore the upper and lower triangular bounds are also bounded between 0 ± and 180 ± and

the triangular inequality in Equation (3) may be written as:

min{360 ± ° (µ1,2 + µ2,3), (µ1,2 + µ2,3)} ∏ µ1,3 ∏ |µ1,2 ° µ2,3| (4)

To convert this inequality in correlation terms, we observe that the cosine function monotonically decreases

from +1 to -1 as µ varies from 0 ± to 180 ±. Taking the cosine of the triangular inequality, we get the basic

form of the transitive inequality:

cos(µ1,2 + µ2,3) ∑ cos(µ1,3) ∑ cos(µ1,2 ° µ2,3). (5)

This may be rearranged using trigonometric identities to:

cos µ1,2 cos µ2,3 °
q

1° (cos µ1,2)2

q
1° (cos µ2,3)2 ∑ cos µ1,3

∑ cos µ1,2 cos µ2,3 +
q

1° (cos µ1,2)2

q
1° (cos µ2,3)2 (6)

Multiplying this inequality with (||r1||2||r2||2)(||r2||2||r3||2) and simplifying using Equation (2), we get

the transitive inequality for cross-correlation:

√1,2√2,3 +
q

(||r1||2||r2||2)2 ° √2
1,2

q
(||r2||2||r3||2)2 ° √2

2,3

(||r2||2)2

∑ √1,3 ∑
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√1,2√2,3 °
q

(||r1||2||r2||2)2 ° √2
1,2

q
(||r2||2||r3||2)2 ° √2

2,3

(||r2||2)2
(7)

This inequality provides transitive bounds upon cross-correlation between r1 and r3, if the cross-correlation

between r1 and r2 and that between r2 and r3 is already known.

Cross-correlation is often used in its normalized form to remove its bias towards brighter regions.

Normalized Cross-Correlation (NCC) between image blocks r1 and r2 is defined as:

¡1,2 =
√1,2

||r1||2||r2||2
, (8)

Angular distance between two image blocks may also be written in terms of NCC, ¡: µ1,2 = cos°1(¡1,2).

Transitive inequality given by Equation (6) gets modified for NCC as follows:

¡1,2¡2,3 +
q

1° ¡2
1,2

q
1° ¡2

2,3 ∑ ¡1,3 ∑

¡1,2¡2,3 °
q

1° ¡2
1,2

q
1° ¡2

2,3. (9)

This inequality yields transitive bounds upon NCC between image blocks r1 and r3, if the NCC between

r1 and r2 and that between r2 and r3 is already known.

NCC is robust to contrast variations, but it is not robust to the brightness variations. A more robust

measure, invariant to all linear changes in the signal, is correlation coefficient, defined as:

Ω1,2 =
√1,2 °mnµ1µ2

||r1 ° µ1||2||r2 ° µ2||2
, (10)

where µ1 and µ2 are the means of r1 and r2 respectively. Correlation-coefficient can also be written in

terms of the angular distance as follows: Ω1,2 = cos(µ̂1,2), where µ̂1,2 is the angular distance between

r1 ° µ1 and r2 ° µ2. The transitive inequality in terms of µ̂ can be derived by following the same steps

as that for µ, and yields:

cos(µ̂1,2 + µ̂2,3) ∑ cos(µ̂1,3) ∑ cos(µ̂1,2 ° µ̂2,3). (11)

This can be expanded to the transitive inequality for the correlation-coefficient:

Ω1,2Ω2,3 +
q

1° Ω2
1,2

q
1° Ω2

2,3 ∑ Ω1,3 ∑

Ω1,2Ω2,3 °
q

1° Ω2
1,2

q
1° Ω2

2,3. (12)
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Fig. 2. The tightness of Transitive bounds: (a) Case 1: Both angles are small (b) Case 2: One angle is small and the other is large (c) Case

3: Both angles are large.

This inequality gives bounds upon the correlation coefficient between image blocks r1, r3, if the values

of Ω1,2 and Ω2,3 are known.

Transitive bounds can also be derived by exploiting the relationship between correlation and distance

measures other than the angular distance. For example, we have derived transitive inequality through

Euclidean distance as shown in Appendix I. However, we find that the bounds based upon angular distance

are tighter than the bounds based upon Euclidean distance (Appendices II and III) and therefore more

useful for elimination algorithms.

In the next section, we will show how the transitive bounds for correlation measures can be exploited

algorithmically, to speedup different template matching applications.

III. TRANSITIVE ELIMINATION ALGORITHMS

Transitive Elimination algorithms are developed to exploit the transitive bounds for fast template

matching. For a particular search location, transitive bounds indicate the maximum and the minimum

limits upon correlation, which can be used to discard unsuitable search locations. For example, at a specific

location, if the maximum limit is less than the correlation value at some previous location, correlation

computation becomes redundant and may be skipped without any loss of accuracy. As the percentage of

skipped search locations increases, the template matching process accelerates accordingly.

In order to compute the transitive bounds, three transitive inequalities were presented in the last section.

In each of these inequalities, there are two Bounding Correlations which must be known in order to find

bounds upon the third Bounded Correlation. For example, in Equation (12), Ω1,2 and Ω2,3 are the two

bounding correlations which constraint the upper and the lower limits upon the bounded correlation Ω1,3.
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In a template matching problem, this concept may be exploited for significant speedup, by designing an

algorithm such that bounded correlations comprise a large percentage of the total computations. Most of

the bounded correlations may be skipped if tight transitive bounds are available.

The tightness of the transitive bounds depends upon the magnitude of the two bounding correlations,

and requires that the upper bound to be low and the lower bound to be high. This dependency may be

more clearly understood by considering transitive inequalities in terms of angular distances as given by

Equations (5) or (11). In these equations, a tight upper bound means cos(µ1,2 ° µ2,3) assuming a value

significantly lesser than +1, which implies |µ1,2 ° µ2,3| has a value significantly larger than 0 ±. Similarly,

lower bound will be tight if cos(µ1,2 + µ2,3) assumes a higher value which implies that µ1,2 + µ2,3 should

have a value close to 0 ±. Considering different ranges of values which µ1,2 and µ2,3 may assume, three

possible cases are shown in Figure 2:

1) Case I: If both angles are small (Figure 2a), their difference will be even smaller and their sum will

also be a relatively small number. Therefore both upper and lower transitive bounds will approach

+1. This ensures tight upper and lower bounds because in this case, the bounded correlation will

also be very high.

2) Case II: If one angle is small while the other is large (Figure 2b), then their difference will be large,

resulting in a tight upper bound, and their sum will also be a relatively large number, resulting in

a loose lower bound.

3) Case III: If both of the angles are large (Figure 2c), then their difference will be a small number,

resulting in a very loose upper bound while their sum will be a significantly larger number, resulting

in a very loose lower bound.

In these three cases, Case I yields tight upper and lower bounds and can potentially be exploited

for computation elimination. However, practically, this case occurs infrequently because it is less likely

to get all of the three image patches to be highly correlated. Case III yields loose upper and lower

bounds therefore this case cannot be exploited for computation elimination. Case II yields a tight upper

bound, and requires that one of the two bounding correlations has high magnitude. Since in most of the

template matching problems, strong autocorrelation is present in one form or the other, therefore choosing

autocorrelation as one of the two bounding correlations ensures that Case II occurs frequently.
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Fig. 3. A 3£ 3 group of search locations with central location shown red. Solid line arrow from template to red patch represents central

correlation and from red patch to blue patches show local autocorrelation, while the dotted arrows represent transitive bounds.

For a standard single template and single reference matching problem, local spatial autocorrelation of

the reference may be exploited to ensure one high bounding correlation, as required by Case II. For

a problem in which one template has to be correlated with a sequence of reference images, temporal

autocorrelation of the reference images may be exploited. Finally if a sequence of template images is to

be correlated with a single reference image, then temporal autocorrelation of templates may be exploited

to obtain speedup. We discuss these three cases in detail in the following subsections.

A. Exploiting Strong Intra-Reference Autocorrelation

Many template matching applications may require a single template to be correlated with a single reference

image. In such applications, local spatial autocorrelation of the reference image may be exploited for fast

template matching. For this purpose, we divide the search locations within the reference image into small

rectangular groups and compute local autocorrelation (AS) of the central location with the neighboring

locations (Figure 3).

In each group, the template image is correlated with the central search location, to yield Central

Correlation (CC) and the correlation of the template with the remaining locations is delayed until the

evaluation of the elimination test. As shown in Figure 3, both local autocorrelation and central correlation

are used as bounding correlations to compute transitive bounds for the remaining locations, and those

with upper bounds less than a current known maximum (or less than a conservative initial threshold) may

be skipped, without any loss of accuracy. Since the spatial autocorrelation with close neighbors is often

high for natural images, this results in a tight upper bound and hence high elimination at most locations.
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Complete pseudo-code for this algorithm is shown as Intra-Reference-TE-Algorithm.

Algorithm 1 Intra-Reference-TE-Algorithm
AS ( Local Spatial Auto-correlation

Cmax ( Initial correlation threshold

for all Groups of search locations do

CC ( correlate(template,central search location)

if CC > Cmax then

(Cmax, imax, jmax)( (CC , Central location indices)

end if

for all Remaining locations within current group do

UpperBound ( ASCC +
p

(1° AS
2)(1° CC

2)

if UpperBound < Cmax then

Skip current location

else

C ( correlate(template,current search location)

if C > Cmax then

(Cmax, imax, jmax)( (C, Current location indices )

end if

end if

end for

end for

print imax, jmax, Cmax

In Algorithm 1, the computation of local autocorrelation is an algorithmic overhead. A standard imple-

mentation of the computation of this overhead has computational complexity of the order of O(mnpq) [9],

where m£n is the template size and p£ q is the reference image size. However, redundant computations

can be eliminated by using a more efficient algorithm, which reduces the computational complexity to

O(shswpq), where sh£sw is the size of the group of locations. Since sh£sw is significantly smaller than
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m £ n, therefore O(shswpq) << O(mnpq). As an example, for a template of 11 £ 11 pixels and using

group size of 3£ 3 search locations, the cost of local autocorrelation computations is only 7.438% of the

cost of one template matching in spatial domain. In many template matching applications more than one

templates are to be correlated with the same reference image, therefore the cost of local autocorrelation

computations being one time cost, is even less significant in such cases.

In our proposed algorithm for AS computation, correlation between central location, rc, and an other

location, rn, is computed simultaneously for all groups, through pixel by pixel multiplication of the

reference image with its (wr, wc) translated version, where (wr, wc) is the row, column difference between

rc and rn. Then using the running-sum approach, we compute the sum of all m£n blocks in the product

array, in just four operations per block. This results in correlation of each search location with a (wr, wc)

pixels translated location. We copy only required values in a final LA-Array as shown in LA-Algorithm.

The same process is repeated shsw times, and each time pq integer multiplications and 4pq additions

are done. Therefore the overall complexity of the proposed algorithm for local spatial autocorrelation

computation is O(shswpq).

B. Exploiting Strong Inter-Reference Auto-Correlation

In some template matching applications, for example tracking objects across a video sequence, one

template image has to be correlated with multiple reference frames. If the reference frames are highly

temporally correlated, such as in the case of a static or nominally moving camera we can exploit their

temporal autocorrelation (AT ) to get tight transitive bounds. The concept is illustrated in Figure 4. In

this scenario, the central correlation (CC) is obtained by completely correlating the template image with

a specific reference frame. The correlation with the remaining frames is delayed until evaluation of the

transitive elimination test.

Using AT and CC as bounding correlations, we compute transitive upper and lower bounds upon all

search locations in the remaining frames and those match locations with upper bound less than the current

known maximum (or an initial correlation threshold), may be discarded without any loss of accuracy.

In some applications, for example automatically checking the missing components in a circuit board

manufacturing facility, the three image patches may happen to be very similar. Therefore we may get both
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Algorithm 2 Local Autocorrelation (LA) Algorithm
Iref ( Reference image

(m,n)( Template image size

(sh, sw)( Size of group of locations

for wr = 1 to sh do

for wc = 1 to sw do

for all pixels (i, j) in Reference-Image do

Pr(i, j)( Iref(i, j)Iref(i + wr, j + wc)

end for

Sf (Running sum of all m£ n patches in Pr

.Copy Only Required Values From Sf to LA-array

for all (i, j) in final LA-array do

LA(i + wr, j + wc)( Sf (i + m, j + n)

i( i + sh

j ( j + sw

end for

end for

end for

upper and lower bounds to be tight as given by Case I. In such applications, all search locations where

upper bound is less than maximum of the lower bound, may also be skipped without any loss of accuracy.

The pseudo code for the complete algorithm is given as Inter-Reference-TE-Algorithm.

This algorithm also carries an overhead but this time it is the temporal autocorrelation of the sequence of

reference frames. We employ a similar strategy as in the previous case and compute this overhead in O(pq),

where pq is the size of reference image. This is done by multiplying, pixel by pixel, the two reference

frames and then using the running sum approach to compute the summation of all patches of size m£ n

in the product array. This summation of products is the cross-correlation between corresponding blocks

of the two frames. Since the complexity of running sum algorithm is O(pq) and before that pq integer

multiplications were carried out, therefore overall complexity of inter-frame autocorrelation computation
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Fig. 4. Exploiting strong inter-frame autocorrelation for fast template matching. Template is fully correlated with only one frame (shown

dark red), while for the remaining frames transitive bounds are computed.

is of the order of O(pq), which is significantly smaller than the complexity of one template correlated with

one reference frame in O(mnpq). Hence the computational cost of inter frame autocorrelation computation

is insignificant as compared to the over all cost of template matching.

C. Exploiting Strong Inter-Template Auto-Correlation

In some template matching applications, for example registration of an aerial video with a satellite

image [13], a sequence of template frames are to be correlated with the same reference image. In such

applications, if consecutive template frames exhibit strong inter-template auto-correlation, the transitive

bounds may be used to speedup the template matching process. For this purpose, we divide the sequence

of template frames into groups such that all templates within each group exhibit strong autocorrelation

A
0
T with the temporally central frame. One such group of templates is shown in Figure 5, in which central

template is shown red and central correlation CC , is obtained by correlating central template with complete

reference image. Then using A
0
T and CC as bounding correlations, we compute the transitive bounds upon

the correlation of each remaining template in the group. All match locations with upper transitive bounds

less than the current known maximum or the initial correlation threshold, may be discarded without any

loss of accuracy.

In large template video sequences, the temporal autocorrelation may significantly vary over time,

requiring different group lengths. To find the appropriate group length at runtime, we have developed
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Algorithm 3 Inter-Reference-TE-Algorithm
fc ( Fully correlated reference frame

CC ( correlate( template, fc)

print fc, imax, jmax, max(CC)

for all remaining frames, fk do

AT ( Autocorrelate fc with fk

Lmax ( Maximum of lower bound over fk

Cmax ( Initial correlation threshold

if Lmax > Cmax then

Cmax = Lmax

end if

for all Search locations in fk do

UpperBound ( AT CC +
p

(1° AT
2)(1° CC

2)

if UpperBound < Cmax then

Skip current location

else

C ( Correlate template with current Location

if C > Cmax then

(Cmax, imax, jmax)( (C, Current location indices )

end if

end if

end for

print fk, imax, jmax, Cmax

end for
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Fig. 5. Exploiting strong inter-template autocorrelation for fast template matching.

a simple algorithm which adapt the length of current group using the percentage computation elimination

results of the previous group. Let actual elimination obtained in the k ° 1st group be e
k°1
act , and the

maximum possible elimination be e
k°1
max:

e
k°1
max = (L[k ° 1]° 1)/L[k ° 1], (13)

where L[·] denotes the length of a group. If both of these eliminations are close to each other, then

autocorrelation may be under utilized and group length may be increased, while if e
k°1
act is significantly

less than e
k°1
max, then autocorrelation is less than expected, therefore group length, L[k ° 1], must be

decreased for the next group:

L[k] =

8
>>>>>><

>>>>>>:

L[k ° 1] + 2, if e
k°1
max ° e

k°1
act < ±l

L[k ° 1]° 2, if e
k°1
max ° e

k°1
act > ±h

L[k ° 1], otherwise

(14)

where ±l and ±h are low and high thresholds upon elimination. Keeping a very low value of ±l will result

an increase in number of groups and hence the number of fully correlated templates, and keeping a high

value of ±h may cause an increase in computational cost due to reduction in elimination.

IV. EXPERIMENTS AND RESULTS

We have implemented the proposed algorithms in C++ and compared with the currently known fast

exhaustive template matching techniques including FFT based frequency domain implementation [11], [12]

Zero-mean Bounded Partial Correlation (ZBPC) [7], Zero-mean Enhanced Bounded Correlation(ZNccEbc) [8]
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and an exhaustive spatial domain implementation (Spat) [14]. In order to ensure a realistic comparison,

we have used only sequential implementations of all algorithms.

Other than correlation based measures, we have also implemented Sum of Absolute Differences (SAD)

with Partial Distortion Elimination [6] and Successive Elimination Algorithm [1] optimizations. Execution

times are measured on an IBM machine with Intel Core 2 CPU 2.13 GHz processor and 1GB RAM.

Experiments are divided into four sub-sections. First three sub-sections correspond to the three proposed

elimination algorithms applied on the correlation coefficient match measure and in forth sub-section the

elimination performance of different correlation based measures is compared with each other. In each

sub-section, different datasets are used which are described first, followed by a brief discussion of the

experimental setup and then the results of a particular proposed algorithm are compared with existing

algorithms in terms of both execution time and computation elimination percentage.

The datasets used in these experiments, implementation codes, experimental setup details and complete

results are available on our web site: http://cvlab.lums.edu.pk/tea.

A. Exploiting Intra-Reference Auto-correlation

These experiments are performed upon 9 datasets, divided into two groups: Circuit Board (CB) and the

Satellite Image (SI) (see Table I). The images to be matched have projective distortions due to difference

in viewing geometry. In addition, the reference image for CB group is a very low contrast image (Figure

6) and the reference image for SI group is a washed out image with very high brightness.

For ZBPC, ZNccEbc and Intra-Reference-TE- Algorithm, initial threshold of 0.80 is used.

Average execution time per template for all algorithms is given in Table II. For CB datasets, maximum

execution time speedup obtained by Intra-Reference-TE-Algorithm over ZBPC is 13.83 times,

over ZNccEbc is 4.63 times, over FFT is 8.00 times, over SAD is 7.15 and over Spat is 14.00 times.

For SI group, maximum speedup of Intra-Reference-TE-Algorithm over ZBPC is 14.81, over

ZNccEbc is 3.38, over FFT is 3.71 and over Spat is 16.50 times. For SI group, SAD has remained

faster than all correlation-coefficient based algorithms. However because of variations in brightness, the

accuracy of SAD is less than 2%, while the accuracy of correlation-coefficient has remained 100%.

The local autocorrelation function computations by LA-Algorithm is many times faster than the
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TABLE I

DATASET DESCRIPTION FOR EXPERIMENTS WITH INTRA-REFERENCE-TE-ALGORITHM

Dataset # of Frames Frame Size Ref. Size Avg. Ωmax

CB.1 15 33 £ 33 1429 £ 1796 0.942

CB.2 15 49 £ 49 1429 £ 1796 0.944

CB.3 15 65 £ 65 1429 £ 1796 0.948

CB.4 15 81 £ 81 1429 £ 1796 0.954

SI.1 598 64 £ 64 1000 £ 800 0.859

SI.2 291 80 £ 80 1000 £ 800 0.891

SI.3 283 96 £ 96 1000 £ 800 0.907

SI.4 275 112 £ 112 1000 £ 800 0.944

SI.5 267 128 £ 128 1000 £ 800 0.942
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Fig. 6. Circuit Board (CB) dataset: reference image (1429 £ 1796) and templates of various sizes:33£ 33, 49£ 49, 65£ 65, 81£ 81.

Correlation-Elimination-Algorithm (CEA) [9]. An execution time comparison for multiple

template sizes is shown in Table III, in which maximum observed speedup of LA-Algorithm over CEA

is 62.37 times.

B. Exploiting Inter-Reference Auto-correlation

1) Experiment on Fast Feature Tracking: In this experiment, manually extracted features are tracked

across Pedestrian (PED) and Cyclist (CYC) video datasets. Both videos were acquired in a typical

surveillance scenario. See Table IV for dataset description and Figure 7 for selected dataset display. Both

datasets contain dissimilarities produced by human motion and frame to frame illumination variations.

In these experiments, initial correlation threshold is set to 0.70. Average execution time per frame
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TABLE II

AVERAGE TIME (SEC) PER TEMPLATE FRAME FOR INTRA-REFERENCE-TE-ALGORITHM AND OTHER EXHAUSTIVE ALGORITHMS

Dataset IR-TEA ZBPC ZNccEbc FFT SAD Spat

CB.1 1.077 7.636 4.991 8.625 2.861 7.817

CB.2 1.667 16.312 7.605 8.610 8.063 16.705

CB.3 2.54 30.807 10.050 8.597 15.373 31.224

CB.4 3.332 46.082 12.175 8.596 23.852 46.663

SI.1 1.120 7.427 3.021 4.164 0.0163 8.143

SI.2 1.353 11.805 3.859 4.185 0.0283 13.045

SI.3 1.485 16.132 4.555 4.172 0.0378 17.823

SI.4 1.633 20.791 5.181 4.192 0.0441 23.117

SI.5 1.740 25.782 5.880 4.154 0.0590 28.715

TABLE III

LOCAL AUTOCORRELATION COMPUTATION TIME IN SECONDS FOR LA-ALGORITHM AND CEA ALGORITHM [9].

SI DataSet SI.1 SI.2 SI.3 SI.4 SI.5

LAF Time 0.499 0.499 0.499 0.484 0.484

CEA Time 8.937 13.780 18.639 24.216 30.184

CB DataSet CB.1 CB.2 CB.3 CB.4 -

LAF Time 1.671 1.671 1.671 1.656 -

CEA Time 8.390 18.013 32.730 49.260 -

taken by different algorithms is shown in Table V. Maximum observed execution time speedup of

Inter-Reference-TE-Algorithm over ZBPC is 12.47 times, over ZNccEbc is 13.71 times, over

FFT is 21.51 times, over SAD is 4.04 times and over Spat is 13.72 times. Computation elimination

comparisons are shown in Table VI. Percentage computation elimination achieved by ZNccEbc are larger

than Inter-Reference-TE-Algorithm in both experiments, however execution time of ZNccEBC

is larger than almost all algorithms. It is because of the fact that on small template sizes the ZNccEbc

bound evaluation cost exceeds the savings achieved by the eliminated computations.

2) Experiment on Fast Component Tracking: As compared to feature tracking, in this dataset there is

no local motion and the component templates are significantly larger in size as compared to the feature

templates. Depending upon the template sizes, there are four categories of Component Tracking (CT)
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TABLE IV

DATASET DESCRIPTION FOR FAST FEATURE TRACKING/FAST COMPONENT TRACKING EXPERIMENTS

Dataset # of Feat. Feat. Size # of Frames Frame Size

PED 21 23 £ 11 325 240 £ 320

CYC 5 17 £ 17 38 240 £ 320

CT.1 6 63 £ 63 16 479 £ 640

CT.2 1 178 £ 62 16 479 £ 640

CT.3 1 136 £ 104 16 479 £ 640

CT.4 1 147 £ 63 16 479 £ 640

!!!!!! ! ! ! ! ! ! !"#$!
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Fig. 7. Fast feature tracking Dataset: (a) Pedestrian dataset: four frames and 9 feature templates. (b) Cyclist dataset: four frames and 5

feature templates.

TABLE V

AVERAGE TIME IN SECONDS PER FRAME FOR INTER-REFERENCE-TE-ALGORITHM AND THE OTHER ALGORITHMS.

Dataset IR-TEA 3 ZNccEbc ZBPC FFT SAD Spat

PED 0.159 1.686 1.047 2.877 0.338 1.150

CYC 0.0269 0.369 0.282 0.590 0.0795 0.292

CT.1 0.792 6.66 12.406 10.380 5.388 16.464

CT.2 0.253 2.563 5.127 1.724 3.095 5.533

CT.3 0.206 2.447 6.352 1.730 4.591 7.857

CT.4 0.127 1.18 3.606 1.732 2.379 5.105
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TABLE VI

PERCENTAGE COMPUTATION ELIMINATION IN FAST FEATURE TRACKING AND FAST COMPONENT TRACKING EXPERIMENTS

Dataset TE-Algorithm 3 ZNccEbc ZBPC SAD

PED 81.976 89.607 12.570 75.583

CYC 93.748 93.839 8.451 77.259

CT.1 92.249 89.454 24.957 69.192

CT.2 88.149 87.569 8.102 49.063

CT.3 91.029 87.957 19.750 43.889

CT.4 93.162 97.58 29.585 57.396
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Fig. 8. Fast component tracking experiment datasets: 8 frames of circuit-board images, each of size 479£640 pixels, and component

templates of different sizes: 178£ 62, 136£ 104, 147£ 63, 63£ 63. Original dataset taken from [15].

dataset: CT1, CT2, CT3 and CT4 (Figure 8 and Table IV). Original images were taken from [15] and

following frame to frame variations were produced: affine photometric variations, non-linear photometric

variations, complementing, sharpening by edge-enhancements and geometrically transforming the original

images.

For all algorithms, average execution time per reference frame is given in Table V. Maximum speedup

observed by Inter-Reference-TE-Algorithm over ZBPC is 30.70 times, over ZNccEbc al-

gorithm is 11.88 times, over FFT is 13.54 times, over SAD is 22.19 times and over Spat is 39.92

times. Average computation elimination for each of these algorithms is given in Table VI. Computation

elimination achieved by Inter-Reference-TE-Algorithm is significantly larger than any of the

other algorithms.



IEEE TRANSACTIONS ON IMAGE PROCESSING 21

C. Exploiting Inter-Template Auto-correlation

1) Fast Video Geo-registration: These experiments are performed upon ten datasets divided into two

groups: DS 1 and DS 2 (Table VII and Figure 9). The images to be matched contain dissimilarities due

to difference in imaging sensor and geometry. Additional dissimilarities were generated by reducing the

dynamic range of templates in DS 1 to one third of the original range and the templates in DS2 were

contrast reversed. Contrast reversals are frequently observed if matching is to be done between infra-red

and optical imagery.

In DS 1, best match location is the location with maximum correlation and the minimum acceptable

threshold is set to 0.80. In case of DS 2, the best match location is the location with minimum nega-

tive correlation and the maximum acceptable correlation is set to -0.85. Execution time comparison of

Inter-Template-TE-Algorithm (IT-TEA) and other algorithms are given in Table VIII. For DS1,

maximum execution time speedup of IT-TEA over ZBPC is 9.77 times, over ZNccEbc is 2.98 times,

over FFT is 4.24 times and over Spat is 15.10 times. For DS2, maximum observed speedup of IT-TEA

over ZBPC is 10.20 times, over ZNccEbc is 11.65 times, over FFT is 3.022 times and over Spat is 10.21

times. Poor performance of ZBPC and ZNccEbc on DS2 is due to the fact that these algorithms have

been developed to find maxima of correlation coefficient, where as in case of DS2 correlation minima has

to be searched. Transitive elimination algorithms, however can be used to find the correlation maxima as

well as the minima, efficiently.

In some cases, SAD has been found to be faster than all correlation coefficient based algorithms, however

we find that, because of intensity distortions, accuracy of SAD over these datasets is less than 1%, where

as the accuracy of correlation coefficient has remained 100%.

2) Fast rotation/scale invariant template matching: Consecutive rotated and scaled versions of an object

are generally highly correlated. We have used this correlation to speedup the exhaustive rotation/scale

invariant template matching by using the Inter-Template-TE-Algorithm (IT-TEA). These exper-

iments are performed upon optical character recognition dataset using scanned pages from multiple books.

The template images consist of 14 letters: {a, c, e, g, i, k, m, o, p, s, v, w, x, z}, which were extracted

from one of the scanned image (see Table IX and Figure 10). Each template is rotated from -5 ± to +5 ±

and scaled from -8% to +8% at a step size of 2%, resulting in 99 rotated/scaled versions. All of these
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TABLE VII

DATASET DETAILS USED FOR VIDEO GEO-REGISTRATION EXPERIMENTS

Dataset # of Frames Frame Size Ref. Size Avg. Ωmax

DS 1.a 734 64 £ 64 736 £ 1129 0.939

DS 1.b 744 80 £ 80 736 £ 1129 0.961

DS 1.c 694 96 £ 96 736 £ 1129 0.963

DS 1.d 641 112 £ 112 736 £ 1129 0.961

DS 1.e 594 128 £ 128 736 £ 1129 0.958

DS 2.a 659 64 £ 64 1394 £ 2152 -0.935

DS 2.b 645 80 £ 80 1394 £ 2152 -0.921

DS 2.c 648 96 £ 96 1394 £ 2152 -0.874

DS 2.d 632 112 £ 112 1394 £ 2152 -0.924

DS 2.e 616 128 £ 128 1394 £ 2152 -0.794

!!!!!!!!!!!!!!!!!!!!!!!!!! !! !! !! !! !

Fig. 9. Video geo-registration experiment dataset DS2. Reference images are taken from earth.google.com and templates from

terraserver.microsoft.com.

rotated/scaled versions are exhaustively correlated with each of the 14 reference images, with varying

background colors, arbitrary rotations, arbitrary scaling and aliasing effects due to poor scanner resolution

with broken and irregular character boundaries.

Out of 99 rotated/scaled versions of each template, only one template is fully correlated with the

complete reference image while for all of the remaining templates transitive bounds are computed. In

these experiments, initial correlation threshold is set to 0.80. The execution time speedup obtained by

IT-TEA is 28.26 times over ZBPC, 36.03 times over ZNccEbc, 126.7 times over FFT, 12.71 times over
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TABLE VIII

VIDEO GEO-REGISTRATION: EXECUTION TIME IN SEC FOR INTER-TEMPLATE-TE-ALGORITHM AND OTHER ALGORITHMS

Dataset IT-TEA ZNccEbc ZBPC FFT SAD Spat

DS1.a 0.996 2.962 6.413 4.222 0.107 8.455

DS1.b 1.156 3.437 8.575 04.173 0.156 13.587

DS1.c 1.412 4.209 12.738 04.161 0.257 18.552

DS1.d 1.669 4.837 16.315 04.261 0.436 24.017

DS1.e 1.977 4.905 16.710 04.266 0.609 29.855

DS2.a 6.466 19.048 32.163 19.546 2.969 32.847

DS2.b 8.950 32.028 53.303 19.551 4.975 53.760

DS2.c 12.29 48.777 74.399 19.605 7.030 74.932

DS2.d 5.838 68.036 98.432 19.458 9.374 99.027

DS2.e 12.31 87.991 125.17 19.562 11.958 125.74

TABLE IX

ROTATION AND SCALE INVARIANT TEMPLATE MATCHING: DATASET FOR CHARACTER RECOGNITION

Letter Tmp. Size Ref. Size Letter Tmp. Size Ref. Size

a 19£14 679£889 o 18£17 671£1215

c 19£15 755£977 p 25£17 702£1206

e 17£15 552£1005 s 18£12 711 £ 1224

g 26£16 593£1209 v 18£17 681 £ 1271

i 25£8 907£1263 w 19£23 756 £ 1341

k 25£17 684£1031 x 18£16 475 £ 1463

m 18£24 647£1046 z 19£15 291 £ 758

SAD and 29.26 over Spat (Table X). As observed in feature tracking experiment, the performance of

ZNccEbc have been significantly degraded in this experiment as well, because on small template sizes,

the cost of ZNccEbc elimination test is larger than the benefit from eliminated computations.

D. Performance Comparison of Different Correlation Based Measures

In this subsection we compare the computation elimination performance and the execution times of

the three correlation based measures: cross-correlation, NCC and correlation-coefficient, with each other.

Comparison is done on seven datasets, five from video geo-registration DS1: a, b, c, d, e ( Table VII



IEEE TRANSACTIONS ON IMAGE PROCESSING 24

Fig. 10. Rotation and Scale invariant template matching: some portions from different reference images and enlarged view of template

images containing small case letters.

TABLE X

ROTATION AND SCALE INVARIANT TEMPLATE MATCHING: AVERAGE EXECUTION TIME IN SEC FOR IT-TEA AND OTHER ALGORITHMS.

Dataset IT-TEA ZNccEbc ZBPC FFT SAD Spat

a 0.0311 0.837 0.613 3.589 0.233 0.603

c 0.0297 0.853 0.634 3.441 0.268 0.642

e 0.0289 0.786 0.565 3.469 0.222 0.582

g 0.0363 0.953 0.888 3.435 0.372 0.898

i 0.0344 0.982 0.492 3.466 0.182 0.490

k 0.0328 1.182 0.927 3.431 0.417 0.930

m 0.0459 0.883 0.902 3.703 0.337 0.946

o 0.0308 0.853 0.665 3.465 0.267 0.689

p 0.0335 1.118 0.928 3.495 0.394 0.929

s 0.0274 0.827 0.514 3.474 0.188 0.509

v 0.0287 0.833 0.669 3.484 0.279 0.688

w 0.0326 0.944 0.912 3.641 0.412 0.954

x 0.0302 0.882 0.634 3.525 0.288 0.640

z 0.0290 0.879 0.649 3.474 0.330 0.644
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TABLE XI

EXECUTION TIME (T ) (SEC) AND PERCENT ELIMINATION (E) FOR CROSS-CORRELATION (√), NCC (¡) AND THE Ω.

Dataset T√ T¡ TΩ E√ E¡ EΩ

DS 1.a 0.278 1.247 0.996 95.369 76.697 83.201

DS 1.b 0.425 1.774 1.156 94.66 70.495 85.322

DS 1.c 0.793 2.002 1.412 92.494 71.425 85.793

DS 1.d 1.205 2.270 1.669 89.251 72.511 86.292

DS 1.e 1.576 2.651 1.977 85.137 72.569 86.495

PED 0.00524 0.00668 0.00758 99.358 82.237 81.976

CYC 0.00345 0.00407 0.00538 97.298 94.315 93.748

) using Inter-Template-TE-Algorithm and two datasets from fast feature tracking experiment:

pedestrian (PED) and cyclist (CYC) (Table IV) using Inter-Reference-TE-Algorithm.

In these experiments we observe that cross-correlation is the fastest of the three measures. Maximum

speedup obtained by cross-correlation over NCC is 4.48 times and over correlation coefficient is 3.58

times.

V. CONCLUSION

In this work, we have demonstrated that transitive property of correlation can be used to exploit

autocorrelation for fast template matching. In order to exploit three different forms of autocorrelation,

three different elimination algorithms are formulated. The proposed algorithms have exhaustive equivalent

accuracy and are compared with current known fast exhaustive techniques on a wide variety of real image

datasets. In our experiments, the proposed algorithms have outperformed the current known algorithms

by a significant margin.

APPENDIX I

TRANSITIVE INEQUALITY BASED UPON EUCLIDEAN DISTANCE

Considering the image blocks r1, r2 and r3 as points in Rm£n, let ¢i,j be the Euclidean distance

between any two of them, where i, j 2 {1, 2, 3}:

¢i,j =

vuut
nX

x=1

mX

y=1

°ri(x, y)° µi

æi
° rj(x, y)° µj

æj

¢2
. (15)
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Triangular inequality for Euclidean distance is given by:

|¢1,2 °¢2,3| ∑ ¢1,3 ∑ ¢1,2 + ¢2,3. (16)

Squaring all sides and using following relationship [9]:

Ωi,j = 1° 1

2
¢2

i,j, (17)

and simplifying the expression, we get Euclidean distance based transitive inequality:

(Ω1,2 + Ω2,3 ° 1) + 2
q

(1° Ω1,2)(1° Ω2,3) ∏ Ω1,3

∏ (Ω1,2 + Ω2,3 ° 1)° 2
q

(1° Ω1,2)(1° Ω2,3). (18)

In [9] it has been shown that upper bound based upon angular distance is tighter than the Euclidean

distance. Here we show that the angular distance based lower bound is also tighter than the Euclidean

distance based lower bound.

Since 0 ∑ ¢i,j ∑ 2 and °1 ∑ Ωi,j ∑ +1, therefore following inequality always holds:

1° ¢1,2¢2,3

4
° 1

2

q
(1 + Ω1,2)(1 + Ω2,3) ∏ 0, (19)

and from the non-negativity property of the distance measures:¢1,2¢2,3 ∏ 0. Therefore:

¢1,2¢2,3

£
1° ¢2,3¢1,2

4
° 1

2

q
(1 + Ω1,2)(1 + Ω2,3)

§
∏ 0. (20)

From Equation (17):

¢1,2¢2,3 = 2
q

(1° Ω2,3)(1° Ω1,2). (21)

From (21) and (20):

Ω1,2Ω2,3 +
q

(1° Ω2
1,2)(1° Ω2

2,3)

∑ (Ω1,2 + Ω2,3 ° 1) + 2
q

(1° Ω1,2)(1° Ω2,3). (22)
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APPENDIX II

COMPARISON OF LOWER TRANSITIVE BOUNDS

Since 0 ∑ ¢i,j ∑ 2 and °1 ∑ Ωi,j ∑ +1, therefore following inequalities always hold:

¢1,2¢2,3

£
1° 1

2

q
(1 + Ω1,2)(1 + Ω2,3)

§
∏ 0, (23)

Ω1,2Ω2,3 ° (Ω1,2 + Ω2,3 ° 1) ∏ 0. (24)

Adding these two inequalities and rearranging the terms:

Ω1,2Ω2,3 °¢1,2¢2,3
1

2

q
(1 + Ω1,2)(1 + Ω2,3)

§

∏ (Ω1,2 + Ω2,3 ° 1)°¢1,2¢2,3, (25)

substituting the value of ¢1,2¢2,3 from (21):

Ω1,2Ω2,3 °
q

(1° (Ω1,2)2)(1° (Ω2,3)2)

∏ (Ω1,2 + Ω2,3 ° 1)° 2
q

(1° Ω1,2)(1° Ω2,3). (26)
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