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Detection and tracking of humans and faces
Stefan Karlsson, Murtaza Taj, Andrea Cavallaro

Abstract— We present a video analysis framework that in-
tegrates prior knowledge in object tracking to automatically
detect humans and faces, and can be used to generate abstract
representations of video (key-objects and object trajectories). The
analysis framework is based on the fusion of external knowledge,
incorporated in a person and in a face classifier, and low-level
features, clustered using temporal and spatial segmentation. Low-
level features, namely color and motion, are used as a reliability
measure for the classification. The results of the classification are
then integrated into a multi-target tracker based on a particle
filter that uses color histograms and a zero–order motion model.
The tracker uses efficient initialization and termination rules and
updates the object model over time. We evaluate the proposed
framework on standard datasets in terms of precision and
accuracy of the detection and tracking results, and demonstrate
the benefits of the integration of prior knowledge in the tracking
process.

I. I NTRODUCTION

Video filtering and abstraction are of paramount importance
in advanced surveillance and multimedia database retrieval.
The knowledge of the objects’ types and position helps seman-
tic scene interpretation, indexing video events and mininglarge
video collections. However, the annotation of a video in terms
of its component objects is as good as the object detection
and tracking algorithm that it is based upon. The quality of
the detection and tracking algorithm depends in turn on its
capability of localizing objects of interest (object categories)
and on tracking them over time. It is in general difficult
to define object categories for retrieval in video because
of different meanings and definition of objects in different
applications. However, some categories of objects, such as
peopleandfaces, are of interest across several applications and
provide relevant cues about the content of a video. Detecting
and tracking people and faces provides significant semantic
information about the video content for video summarization,
intelligent video surveillance, video indexing and retrieval.
Moreover, the human visual system is particularly attracted
by people and faces, and therefore their detection and tracking
enables perceptual video coding [7].

A number of approaches has been proposed for the integra-
tion of object detectors in a tracking process. A stochastic
model is implemented in [9] to track a single face in a
video that relies on a combined face detection and prediction
from the previous frame. Faces are detected in a coarse-
to-fine network, thus producing a hierarchical trace of face
detections for each frame that is used in a trained probabilistic
framework to determine face positions. Edgelet-based part

The authors acknowledge the support of the UK Engineering
and Physical Sciences Research Council (EPSRC), under grant
EP/D033772/1. S. Karlsson, M. Taj and A. Cavallaro are with the
Multimedia and Vision Group, Queen Mary University of London, E-mail:
{stefan.karlsson,murtaza.taj,andrea.cavallaro}@elec.qmul.ac.uk

detector and mean shift can be used to perform detection and
tracking of partially occluded objects [23]. The incorporation
of recent observations improves the performance of a particle
filter [18], and has been used in a hockey player tracking
system by increasing the particles in the proposal distribution
around detections [14]. As an alternative to an object detector,
contour extraction can be combined with color information
as part of the object model [24]. Other methods include
motion segmentation combined with a nearest neighborhood
filter [13], updating a Kalman filter with detections [22],
combining detection and MAP probabilities [5], and using
detections as input to a probabilistic data association filter [21].

In this paper we propose a unified multi-object detection
and tracking framework that uses an object detection algorithm
integrated with a particle filter, and demonstrate it on people
and faces. The proposed framework integrates prior knowledge
of object categories with probabilistic tracking. We use both
a priori knowledge (in the form of training of an object
classifier) andon–line knowledge acquisition (in the form of
the target model update). Detection of faces and people is
done by a cascaded Adaboost classifier, supported by color
and motion segmentation, respectively. Next, a particle filter
tracks the objects over time and compensates for missing or
false detections. The detections, when available, influence the
proposal distribution and the updating of the target color model
(Fig. 1). We evaluate the proposed framework on the standard
datasets CLEAR [11], AMI [2] and PETS 2001 [1].

The paper is organized as follows. Section II introduces face
and people detection and evidence fusion. The integration of
detections in particle filtering and track management issues are
described in Section III. Section IV introduces the performance
measures. Section V presents the experimental results. Finally,
in Section VI we drawn the conclusions.

II. D ETECTING HUMANS AND FACES

A. Classifying object categories

The a priori knowledge about object categories to be dis-
covered in a video is incorporated through the training of
an object detector. The validity of the proposed framework
is independent of the chosen detector and here we use two
different detectors to demonstrate the feasability and generality
of the proposed framework.

In particular, to detectfacesandpeoplewe use an Adaboost
feature classifier based on a set of Haar-wavelet like features
([19], [20]). These features are computed on the integral
image I(x, y), defined asI(x, y) =

∑x

i=1

∑y

j=1 I(i, j),
whereI(i, j) represents the original image intensity. The Haar
features are differences between sums of all pixels within
sub-windows in the original image. Therefore, in the integral
image they are calculated as simple differences between the
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Fig. 1. Flow chart of the proposed object-based video analysis framework.
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Fig. 2. Haar features used for classification. (a-e) Edge features; (f-g) center–
surround features; (h-o) line features.

top-left and the bottom-right corners of the correspondingsub-
windows.

For face detection, we use a trained classifier ([4]) for
frontal, left and right profile faces, with the14 features shown
in Fig. 2(a-d)(f-o). The edge feature shown in Fig. 2(e) is used
to model tilted edges, such as shoulders, and it is thereforenot
suitable for modelling faces.

For peopledetection, the training was performed using the
13 features shown in Fig. 2(a-e) and Fig. 2(h-o) ([20]). We
usednt = n+

t + n−

t = 4285 training samples, withn+
t =

2543 positive10×24 pixel samples selected from the CLEAR
dataset (Fig. 3) andn−

t = 1742 negative samples with different
resolutions. Since there is one weak classifier for each distinct
feature combination, effectively there are2543 × 13 = 33059
weak classifiers that, after training, are organized in 20 layers.
Note that the features in Fig. 2(c,d,g)(l-o) are computed on
the integral image rotated by45◦ [12].

Let us denote the object classification result with
Ôc

t (x, y, w, h, n), where c denotes the object class (we will
use the subscriptf for faces andp for people),n = 1, ..., Nc

is the number of detected objects for classc at time t, (x, y)
is the center of the object,w andh are its width and height,
respectively.

Fig. 3. Subset of positive samples used for training the person detector.

B. Low-level segmentation

Low-level segmentation provides a reliability cue for each
detection. We use skin color segmentation and motion segmen-
tation to support face and person categorization, respectively.

Skin color segmentationis based on a non-linear trans-
formation of theY CbCr color space [10], which results in
a two-dimensional ad-hoc chromaticity planeC ′

bC
′
r. As this

transformation is degenerate for gray pixels, RGB values
respecting the conditions0.975 < R/B and G/B < 1.025
are discarded. To distinguish skin pixels in theC

′

bC
′

r plane an
ellipse encircling skin chromaticity is defined as

x2

a2
+

y2

b2
= 1, (1)

with
[

x
y

]

=

[

cos θ sin θ
− sin θ cos θ

] [

C
′

b − cx

C
′

r − cy

]

. (2)

We sampled skin chromaticity from the CLEAR dataset and
computed the valuescx = 110, cy = 152, a = 25, b = 15 and
θ = 2.53, which are comparable to those in [10]. An example
of skin color segmentation is shown in Fig. 4(d).
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(a) (b)

(c) (d)

Fig. 4. Sample segmentation results on CLEAR test sequences. (a) Outdoor
test sequence and (b) corresponding motion segmentation result. (c) Indoor
test sequence and (d) corresponding color segmentation result.

Motion segmentationis performed using a statistical color
change detector [6]. The detector assumes that a reference
image is available, either because an image without objects
can be taken or because of the use of an adaptive background
algorithm [15], [17]. An example of motion segmentation
results is presented in Fig. 4(b).

Let us denote the segmentation mask asSc
t (i, j), wherei =

1, ...,W andj = 1, ...,H represent the pixel position, withW
andH representing the image width and height, respectively.

C. Evidence fusion

Segmentation results are used to remove false positive
detections. A detection̂Oc

t (xd, yd, wd, hd, n) is accepted if

|Ôc
t (xd, yd, wd, hd, n) ∩ Sc

t (i, j)|
|Ôc

t (xd, yd, wd, hd, n)|
> λc, (3)

where |.| is the cardinality of a set andλc is the minimum
number of segmented pixels used to accept a detected area.
For color segmentationλf = 0.1, whereas formotion seg-
mentationλp = 0.2. The values of these thresholds depend
on the fact that detections may contain background areas (for
people) or hair regions (for faces). Fig. 5 shows two examples
of detection results prior and after evidence fusion.

The resulting object detections are then used to initializethe
object tracker as well as to solve track management issues, as
discussed in the next section.

III. G ENERATING TRAJECTORIES

A. The tracker

Tracking estimates the state of an object in subsequent
frames. We use a particle filter tracker as it can deal with
non-Gaussian multi-modal distributions [3], [14].

Let us represent the target state asxt = [x, y, w, h]. The
posteriorpdf of a target location in the state space is defined

(a) (b)

(c) (d)

Fig. 5. Sample person and face detection results. (a) Person detection
using the classifier only; (b) filtered detections after evidence fusion. (c) Face
detection using the classifier only; (d) filtered detectionsafter evidence fusion.

as a sum of Dirac deltas centered around the particles, with
weightsωn

t :

p(xt|z1:t) ≈
Ns
∑

n=1

ωn
t δ(xt − x

n
t ), (4)

wherex
n
t is the state of thenth particle in framet, z1:t are

the measurements from time1 to t andNs is the total number
of particles. The state transitionp(xn

t |xn
t−1) is a zero–order

motion model defined asxt = xt−1 + N (xt−1, σ), where
N (xt−1, σ) is a Gaussian noise centered in the previous state
and with varianceσ. The update of thepdf over time is based
on the recalculation of the weightsωn

t :

ωn
t ∝ ωn

t−1

p(zt|xn
t )p(xn

t |xn
t−1)

q(xn
t |xn

t−1, zt)
, (5)

wherep(zt|xn
t ) is the likelihood of the measurement. Since

we use resampling to avoid the degeneracy of the particles
(i.e., when the weights of all particles except one tend to zero
after few iterations [3]),ωn

t−1 = 1/N ∀ n and Eq. 5 simplifies
to

ωn
t ∝ p(zt|xn

t )p(xn
t |xn

t−1)

q(xn
t |xn

t−1, zt)
. (6)

To compute the likelihoodp(zt|xn
t ), we use a color histogram

φM = [ϕM
1,1,1, ..., ϕ

M
RGB ] as object model ([14], [24]), where

R, G and B is the number of bins in each color channel.
The color difference between the modelM and a particle
p, dJ(φM, φp), is based on the Jeffrey divergence [16]. The
likelihood is finally estimated as

p(zt|xn
t ) =

1√
2πσl

e
dJ (φM,φp)2

2σ2
l . (7)

B. Particle propagation

Instead of using the transition prior only, we include object
detections, when available, in theproposal distribution: a
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fraction of the particles are spread around the previous state
according to the motion model, whereas the rest are spread
around the detections. For this reason, each detection has to
be linked to the closest state. Thisassociationis established
with a gated nearest neighborhood filter, which selects the
detectionOc

t (xd, yd, wd, hd, n) closest to the statext, if it is
in its proximity. The proximity conditions are















|xd − xtr| < δc(wtr + ηchtr)
|yd − ytr| < δc(ηcwtr + htr)
(1 − γc)wtr < wd < (1 + γc)wtr

(1 − γc)htr < hd < (1 + γc)htr

(8)

where(xtr, ytr) is the center,wtr andhtr are the width and
height of the ellipse representing the object; andηf = 1,
ηp = 0, δf = γp = 0.25, δp = γf = 0.5 are determined
experimentally. The association is incorporated in Eq. 9 [14]
as:

q(xt|xt−1, zt) = αcqd(xt|zt) + (1 − αc)p(xt|xt−1), (9)

where αc is the fraction of particles spread around the de-
tection in the state space andqd(xt|zt) is a Gaussian around
the associated detection. If the proximity conditions are not
satisfied, a new candidate track is initialized andαc = 0. In
such a case, Eq. 9 reduces toq(xt|xt−1, zt) = p(xt|xt−1),
whereas Eq. 6 reduces toωn

t ∝ p(zt|xn
t ).

C. Model update

Object detections are also used to update online the object
modelM. This update aims to avoid track drifting when the
object appearance varies due to changes in illumination, size
or pose. The color histogram is updated according to

ϕM

r,g,b(t) = βcϕ
d
r,g,b(t) + (1 − βc)ϕ

M

r,g,b(t − 1), (10)

wherer = 1, ..., R; g = 1, ..., G; b = 1, ..., B and βc is the
update factor. Note that the histogram is only updated when
there is an associated detection in order to prevent background
pixels to become part of the modelM.

D. Track management issues

Unlike [14], where tracks are initiated with a single de-
tection, we integrate information coming from the detector
and the tracker processes to deal with track initiation and
termination issues. A detectionOc

t (x, y, w, h, n) that is not
associated with a track is considered as a candidate fortrack
initialization. Tracking is started insleeping mode. To switch
a track from sleeping to active mode, Ni detections are
accumulated in subsequent frames. The value ofNi depends
on frequency of the detections:

Ni = min

(

3

2 − 1
f

f, 9

)

, (11)

wheref is the frequency of detections andf = 9/20 is the
minimum frequency. If there is not a sufficient number of
successive detections, then the track is discarded.

(a) (b)

Fig. 6. Example of use of track management rules for sequence S3,frame
270. (a) Without track management: the tracked ellipses degenerate. (b) With
track management: the tracked ellipses correctly estimate theface areas.

A track is terminatedif the low-level segmentation results
do not provide enough evidence for the presence of an object:

|X̂c
t (xd, yd, wd, hd, n) ∩ Sc

t (i, j)|
|X̂c

t (xd, yd, wd, hd, n)|
< λc, (12)

with λp = 0.2 and λf = 0.1. Moreover, a person track
is terminated if Nt = 25 subsequent frames without an
associated detection. A face track is terminated when the color
histogram of the object changes drastically, i.e., the Jeffrey
divergencedJ between the current target and the model is
larger than a thresholdD. A cut-off distance ofD = 0.15 was
found appropriate. Also, we terminate the tracks that deviate
more than3σ from the average face size, learnt on the first
300 tracked faces. Finally, faces whose ratio isw/h > 1.5
are considered unlikely and therefore removed. An example
of performance improvements achieved with the proposed
initialisation and termination rules is shown in Fig. 6.

E. Post-processing

Track verificationis performed to remove false tracks in a
post-processing stage. False tracks are generally initiated by
repeated multiple detections on the same object. To remove
these tracks, a score is computed for each overlapping track:
sn

t = (0.6Nf )/50 + 0.4frd, wheresn
t is the score for trackn

at time t, Nf is the number of frames tracked in a 50-frame
window andfrd is the frequency of detection. The weights on
Nf (0.6) andfrd (0.4) favor tracks with a long history against
new ones with a high frequency. Finally, tracks shorter than
15 frames are likely to be clutter and therefore removed.

IV. PERFORMANCE MEASURES

To quantitatively evaluate the performance of the proposed
framework, two groups of measures are used, namelydetection
and tracking performance measures. We chose asdetection
measures Precision,P , and Recall,R, which are designed to
quantify the ability of an algorithm to identify true targets in
a video, as opposed to false detections and missed detections.
These measures are commonly used to evaluate the perfor-
mance of database retrieval algorithms and are defined as

{

P = TP
TP+FP

R = TP
TP+FN

,
(13)
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TABLE I

SHORT INFORMATION ABOUT THE DATASETS

Dataset Seq. Sequence name Task Frames
AMI S1 EN2001b.Closeup1 face 100–600

S2 EN2001b.Closeup4 face 1–500
S3 IS1003c.L face 1-500
S4 IS1004a.R face 250-750

CLEAR S5 PVTRA102a09 people 500–3001
S6 PVTRA102a10 people 3007–5701
S7 PVTRA102a11 people 1–500
S8 PVTRA102a12 people 1000–1500

PETS S9 PETS1SEG people 1–500

where TP is the number oftrue positives, FP is the number
of false positivesand FN is the number offalse negatives.

The tracking performance measures quantify the accuracy
of the estimated object size (dD) and the accuracy of the
estimated object position (dDist). The measuredD quantifies
the overlap between the ground truth and the estimated targets,
and is defined as

dD = 1 −

∑Nfn

n=1

∑Nfr

t=1

[

2 | G
(t)
n ∩ D

(t)
n |

| G
(t)
n + D

(t)
n |

]

∑Nfr

u=1 Nu
fn

, (14)

where G
(t)
n denotes the ground truth for trackn at time t;

D
(t)
n denotes the corresponding estimated target;Nfn the

number of matched objects in the ground truth and the tracked
objects in a frame;Nfr the total number of frames, andNu

fr

the total number of matched objects in the entire sequence.
The measuredDist is the distance between the centers of the
estimated tracked object and the ground truth, normalized by
the size of the ground truth:

dDist =

∑Nfn

n=1

∑Nfr

t=1

√

(
xd−xg

wg
)2 + (

yd−yg

hg
)2

∑Nfr

u=1 Nu
fn

, (15)

where (xd, yd) and (xg, yg) are the centers of the tracked
object and the ground truth,wg and hg are the width and
the height of the corresponding ground truth object.

V. EXPERIMENTAL RESULTS

We demonstrate the proposed framework on three stan-
dard datasets, namely CLEAR, AMI and PETS 2001. These
datasets include indoor and outdoor scenarios for a total of
8700 frames (Table I).

The same set of parameters is used for motion segmentation
and for the tracker in all the experiments. For the statistical
change detector, the noise variance isσ = 1.8 and the kernel
size is k = 3. The particle filter uses150 particles per
object, with a transition factor of12 pixels per frame. For the
likelihood (Eq. 7),αl = 0.068. For faces,αf = 0.9, βf = 0.35
and for peopleαp = 0.25, βp = 0.1. There values have been
found appropriate after extensive testing. The histogram for
the color model and the likelihood is uniformly quantized with
10 × 10 × 10 bins in the RGB space.

We compare the proposed approach that integrates de-
tections and particle filtering (referred to asPFI) with the
particle filtering alone (referred to asPF). To offer a fair

(a) (b)

(c) (d)

Fig. 7. Comparison of tracking results betweenNN (green) andPFI (blue).
(a) Sequence S2 and (b) Sequence S4: theNN algorithm fails when there is
low frequency of detections. (c) Sequence S6 and (d) Sequence S7: theNN
filter produces jagged trajectories.
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Fig. 8. Performance comparison of face tracks (sequence S3 andS2) and
people tracks (sequence S5) forPF andPFI.
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TABLE II

COMPARISON OF TRACKING PERFORMANCE(MEANS AND STANDARD

DEVIATION FOR 8 RUNS).

Faces
Seq. PFI PF NN
S1 d̄D(σdD

) 0.24(0.02) 0.25(0.03) 0.27
¯dDist(σdDist

) 0.10(0.004) 0.14(0.02) 0.10
P̄ (σ

P̄
) 0.76(0.06) 0.70(0.03) 0.70

R̄(σ
R̄

) 1.00(0) 0.98(0.03) 1

S2 d̄D(σdD
) 0.28(0.01) 0.34(0.01) 0.28

¯dDist(σdDist
) 0.13(0.005) 0.24(0.01) 0.12

P̄ (σ
P̄

) 0.95(0.01) 0.92(0.03) 0.94
R̄(σ

R̄
) 0.96(0.01) 0.89(0.01) 0.94

S3 d̄D(σdD
) 0.27(0.03) 0.39(0.01) 0.32

¯dDist(σdDist
) 0.13(0.02) 0.21(0.02) 0.16

P̄ (σ
P̄

) 0.52(0.03) 0.38(0.02) 0.47
R̄(σ

R̄
) 0.73(0.03) 0.74(0.02) 0.72

S4 d̄D(σdD
) 0.38(0.03) 0.49(0.03) 0.26

¯dDist(σdDist
) 0.26(0.03) 0.41(0.04) 0.17

P̄ (σ
P̄

) 0.66(0.08) 0.52(0.04) 0.60
R̄(σ

R̄
) 0.69(0.06) 0.48(0.05) 0.29

People
Seq. PFI PF NN
S5 d̄D(σdD

) 0.25(0.02) 0.26(0.01) 0.24
¯dDist(σdDist

) 0.18(0.01) 0.17(0.02) 0.19
P̄ (σ

P̄
) 0.78(0.02) 0.78(0.01) 0.80

R̄(σ
R̄

) 0.90(0.02) 0.92(0.03) 0.82
S6 d̄D(σdD

) 0.25(0.05) 0.35(0.03) 0.21
¯dDist(σdDist

) 0.16(0.03) 0.22(0.02) 0.13
P̄ (σ

P̄
) 0.23(0.04) 0.22(0) 0.26

R̄(σ
R̄

) 0.55(0.08) 0.59(0.11) 0.62

S7 d̄D(σdD
) 0.36(0.04) 0.36(0.01) 0.31

¯dDist(σdDist
) 0.21(0.02) 0.24(0.02) 0.17

P̄ (σ
P̄

) 0.74(0.04) 0.70(0.02) 0.81
R̄(σ

R̄
) 0.84(0.01) 0.84(0.01) 0.84

S8 d̄D(σdD
) 0.34(0.03) 0.37(0.04) 0.35

¯dDist(σdDist
) 0.21(0.02) 0.21(0.03) 0.21

P̄ (σ
P̄

) 0.59(0.02) 0.57(0.03) 0.60
R̄(σ

R̄
) 0.67(0.02) 0.65(0.04) 0.61

comparison, in both cases the initialization and termination
rules presented in Section III-D are used. We also comparePFI
with the nearest neighborhood filter (NN). The measurements
used for evaluation are the mean (d̄D, ¯dDist, R̄ and P̄ )
and the corresponding standard deviations on8 runs of the
performance measures presented in Section IV (see Table II).

The comparison ofPFI andPF for faces shows thēdD and
¯dDist scores are smaller for all face sequences indicatingbetter

correspondence between track ellipses and the ground truth.
Further,R̄ andP̄ are larger for the same sequences, except for
one R̄ score. Fig. 9 shows sample results of people and face
tracking and their frame-wisēdD scores are illustrated in Fig.
8. In Fig. 8, row 1, the quality ofPFI results improve more
quickly than those ofPF. The averaged̄D for PFI is 0.17
and forPF 0.33, and in Fig. 8, row 2, the average forPFI is
0.24 and the average forPF 0.31. Fig. 8, row 3 and row 4,
are human tracking examples with average forPFI 0.22 and
0.12 and with average forPF 0.30 and0.15, respectively. The
lower average values of̄dD in all these cases shows improved
performance ofPFI over PF.

The comparison betweenPFI andNN for faces shows that
the d̄D and ¯dDist scores are better for sequence S1 and S3,
similar for sequence S2, whereas these scores indicate better

(a)

(b)

(c) (d)

Fig. 9. Comparison of tracking result withPF (green) andPFI (blue). (a-b)
Sequence S5. (c) Sequence S2. (d) Sequence S3.
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Fig. 10. Example of trajectory-based video description and object prototypes.
(a) Resulting tracks superimposed on the images. (b) Evolution of the tracks
over time. (c) Automatically generated key-objects for frontal, left and right
profile faces.
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performance of theNN tracker for S4, but with lower̄R and
P̄ scores. The reason is that in S4 theNN tracker fails to
track in parts of the sequence with very low frequency of
detections, whereas the particle filter succeeds in tracking in
these regions (Fig. 7). For people tracking, the scores are
similar for S5 and S8, whereasNN is better for S6 and S7
because sometimes detections that are larger than the person
dominate in frequency, andPFI will filter out the correctly
sized detections (which are instead taken into account byNN).

To conclude, Fig. 10 shows an example of trajectory-
based video description using spatio-temporal object trajec-
tories of two faces and the corresponding object prototypes
(frontal and profile faces). Only the true tracks are com-
puted by the proposed algorithm and false detections and
associated tracks are filtered out using skin color segmen-
tation and post–processing. Videos results are available at
http://www.elec.qmul.ac.uk/staffinfo/andrea/detrack.html.

VI. CONCLUSIONS

We presented a general video analysis framework for de-
tecting and tracking object categories and demonstrated iton
people and faces. Video results and quantitative measurements
show that the proposed integration of detections with particle
filtering improves the robustness of the state estimation ofthe
targets.

The proposed framework is general and classifiers of other
body parts and other object types can be incorporated without
changing the overall structure of the algorithm. Using addi-
tional object detectors, a complete story line of a video based
on specific object categories and their trajectories could be
produced, describing interactions and other important events.
Moreover, the video could be annotated semantically with
identity information of the appearing persons by adding a face
recognition module [8].

Our current work includes improving the performance of
the human detector by using a larger training database and
refining the bounding boxes of the detection using edges and
motion segmentation results.
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