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Detection and tracking of humans and faces

Stefan Karlsson, Murtaza Taj, Andrea Cavallaro

Abstract—We present a video analysis framework that in- detector and mean shift can be used to perform detection and
tegrates prior knowledge in object tracking to automatically tracking of partially occluded objects [23]. The incorpiwa
detect humans and faces, and can be used to generate abstraciyf recent observations improves the performance of a pertic

representations of video (key-objects and object trajectorig). The . . .
analysis framework is based on the fusion of external knowledge, filter [18], and has been used in a hockey player tracking

incorporated in a person and in a face classifier, and low-level System by increasing the particles in the proposal disfobu
features, clustered using temporal and spatial segmentation.dw- around detections [14]. As an alternative to an object detec

level features, namely color and motion, are used as a reliability contour extraction can be combined with color information
measure for the classification. The results of the classification are 5 part of the object model [24]. Other methods include

then integrated into a multi-target tracker based on a particle ti tati bined with t neiahborhood
filter that uses color histograms and a zero—order motion model. mation segmentation combineéd with a nearest néignbornoo

The tracker uses efficient initialization and termination rules and ~ filter [13], updating a Kalman filter with detections [22],
updates the object model over time. We evaluate the proposed combining detection and MAP probabilities [5], and using

framework on standard datasets in terms of precision and detections as input to a probabilistic data associaticer {it1].
accuracy of the detection and tracking results, and demonstrat In this paper we propose a unified multi-object detection
the benefits of the integration of prior knowledge in the tracking . . . .
process. and tracking framework that uses an object detection dtyari
integrated with a particle filter, and demonstrate it on peop
and faces. The proposed framework integrates prior knayeled
. INTRODUCTION of object categories with probabilistic tracking. We usehbo

Video filtering and abstraction are of paramount importanée Priori_knowledge (in the form of training of an object
in advanced surveillance and multimedia database retrieVg|2ssifier) andon-line knowledge acquisition (in the form of
The knowledge of the objects’ types and position helps semdfie target model update). Detection of faces and people is
tic scene interpretation, indexing video events and mitange done by a cascaded Adaboost classifier, supported by color
video collections. However, the annotation of a video imgr 2nd motion segmentation, respectively. Next, a particterfil
of its component objects is as good as the object detectibAcKS the objects over time and compensates for missing or
and tracking algorithm that it is based upon. The quality §f!S€ detections. The detections, when available, infledhe
the detection and tracking algorithm depends in turn on i§OPOsal distribution and the updating of the target colodei
capability of localizing objects of interest (object caiegs) (Fig. 1). We evaluate the proposed framework on the standard
and on tracking them over time. It is in general difficulf@t@sets CLEAR [11], AMI [2] and PETS 2001 [1].
to define object categories for retrieval in video because 1€ Paperis organized as follows. Section Il introduces fac
of different meanings and definition of objects in differen@Nd People detection and evidence fusion. The integration o
applications. However, some categories of objects, such dgfections in particle filtering and track management ssue
peopleandfaces are of interest across several applications aitgScribed in Section lll. Section IV introduces the perfance
provide relevant cues about the content of a video. Deggctifiéasures. Section V presents the experimental resulellyrin
and tracking people and faces provides significant semarificSection VI we drawn the conclusions.
information about the video content for video summarizgtio
intelligent video surveillance, video indexing and retake II. DETECTING HUMANS AND FACES
Moreover, the human visual system is particularly attrcte Classifying object categories

by people and faces, and therefore their detection anditigick o ) ) )
enables perceptual video coding [7]. The a priori knowledge about object categories to be dis-

A number of approaches has been proposed for the integf@vered in a video is incorporated through the training of
tion of object detectors in a tracking process. A stochasfi! object detector. The validity of the proposed framework

model is implemented in [9] to track a single face in & independent of the chosen detector and_here we use two
video that relies on a combined face detection and predictif!fferent detectors to demonstrate the feasability anegeity

from the previous frame. Faces are detected in a coarb.he pProposed framework.

to-fine network, thus producing a hierarchical trace of face N Particular, to detedacesandpeoplewe use an Adaboost

detections for each frame that is used in a trained prolséibili feature classifier based on a set of Haar-wavelet like _featur
framework to determine face positions. Edgelet-based pd9l: [20]). These features are computed on the integral
image Z(z,y), defined asZ(z,y) = >3, > 7, 1(3,)),
The authors acknowledge the support of the UK Engineeringsherel(i, j) represents the original image intensity. The Haar
and Physical Sciences Research Council (EPSRC), undert grggatures are differences between sums of all pixels within
EP/D033772/1. S. Karlsson, M. Taj and A. Cavallaro are witie t b-wind in th iginal i Th f in the in&
Multimedia and Vision Group, Queen Mary University of Londdarmail: ~ SUR-WINAOWS 1n the original image. Therefore, in the ingegr

{stefan.karlsson,murtaza.taj,andrea.cavaji@selec.gmul.ac.uk image they are calculated as simple differences between the



EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING 2

| |
} detection tracking }
| |
} - t ) 1 }
r !l
I T i
! !
i 1
| |
| !
T T likelihood !
I . V particle !
I biect detects O (x,y,w,lt,m) part }
L object detector
1,6, J) ! ™ !
1 fusion |
i J10: (o, ) I
l ‘ ) ‘ EY)) T " l ‘ | trajectories
1 d expectation(.. post-processing
| | \ i
| |
| |
! !
1 !
[l |
| T/ !
| |
| |
e ] N L 3
External knowledge Online accumulated knowledge
Face training create/update
@ trained face classifier model
@ colour features : LAGY)] :
Person training 3 [y .
=5 trained people classifier key object key objects
‘ : selection
@ change detection 1.G.J)

parameters

Fig. 1. Flow chart of the proposed object-based video aismafyamework.
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Fig. 2. Haar features used for classification. (a-e) Edgeifes; (f-g) center— - o
surround features; (h-o) line features. Fig. 3. Subset of positive samples used for training the pedsgector.

to.p—(;eft and the bottom-right corners of the correspondinly- g | ow-level segmentation
windows.

For face detection, we use a trained classifier ([4]) for Lowl—level segmentation provides a r_eI|ab|I|ty cue for each
frontal, left and right profile faces, with thiet features shown détection. We use skin color segmentation and motion segmen
in Fig. 2(a-d)(f-0). The edge feature shown in Fig. 2(e) iedis tation to support face aqd person categorization, resdeti
to model tilted edges, such as shoulders, and it is therefare  SKin color segmentatioiis based on a non-linear trans-
suitable for modelling faces. formation of theY C,C, color space [10], which results in

For peopledetection, the training was performed using th@ two—dimensional ad-hoc chromaticity plgﬁ%(];. As this
13 features shown in Fig. 2(a-e) and Fig. 2(h-o0) ([20]). V\;éansfor_manon IS dggenerate for gray pixels, RGB values
usedn; — n + n, — 4285 training samples, with;" — respecting the condition8.975 < R/B and G/B < 1.025

2543 positive 10 x 24 pixel samples selected from the CLEARY® d|scar(jed: To d|_st|ngwsh s_k|_n p|xels n ipC,. plane an
dataset (Fig. 3) and, = 1742 negative samples with differente”'pse encircling skin chromaticity is defined as
resolutions. Since there is one weak classifier for eacindtst 2 2
feature combination, effectively there a843 x 13 = 33059 2t =1 1)
weak classifiers that, after training, are organized in $@ris.

Note that the features in Fig. 2(c,d,g)(l-0) are computed dHth

the integral image rotated bys° [12]. " cosf  sind C{) .

_Let us denote the object classification result with [ y ] = { } { o e ] : (2)
O¢(x,y,w, h,n), wherec denotes the object class (we will T
use the subscripf for faces and for people),n = 1,..., N. We sampled skin chromaticity from the CLEAR dataset and
is the number of detected objects for clasat timet, (z,y) computed the values, = 110, ¢, = 152, a = 25, b = 15 and

is the center of the objecty and i are its width and height, ¢ = 2.53, which are comparable to those in [10]. An example
respectively. of skin color segmentation is shown in Fig. 4(d).

—sinf cosf
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Fig. 4. Sample segmentation results on CLEAR test sequeraje®ufdoor
test sequence and (b) corresponding motion segmentatioh. r@uindoor
test sequence and (d) corresponding color segmentatioh. resu (c) (d)

Fig. 5. Sample person and face detection results. (a) Perstectibhn

using the classifier only; (b) filtered detections after ewvice fusion. (c) Face

detection using the classifier only; (d) filtered detectiafter evidence fusion.
Motion segmentatiofis performed using a statistical color

change detector [6]. The detector assumes that a reference

image is available, either because an image without objects . . .

. as a sum of Dirac deltas centered around the particles, with
can be taken or because of the use of an adaptive backgroijrge d htswn:
algorithm [15], [17]. An example of motion segmentation J b

results is presented in Fig. 4(b). N N .
Let us denote the segmentation maskSa&i, j), wherei = p(ilzre) = > wid(x —x7), 4
1,....,Wandj =1, ..., H represent the pixel position, with’ n=1

and H representing the image width and height, respectivelyherex? is the state of thex particle in framet, z.; are
the measurements from tinieto ¢ and IV, is the total number
of particles. The state transition(x}|x}* ;) is a zero—order
C. Evidence fusion motion model defined as, = x,_; + N (x;,_1,0), where
Segmentation results are used to remove false positi%(xt—_lv" ) is a Gaussian noise centered in the previous state
detections. A detectioﬁ)g(xd,yd,wd, ha,n) is accepted if and with variance . The updatg of thedf over time is based
on the recalculation of the weights’:

plze|xi )p(x7 %7 )
A 3 n n
> Ac, ( ) Wy X Wy_q q(X?|X?_1,Zt)

where .| is the cardinality of a set and, is the minimum where p(z;|x}) is_ thelikelih_ood of the measurement. Sint_:e
number of segmented pixels used to accept a detected al¥ Use resampling to avoid the degeneracy of the particles
(i.e., when the weights of all particles except one tend to ze

For color segmentatiom\; = 0.1, whereas formotion seg- L Y -
mentation), = 0.2. The values of these thresholds deperfiter few iterations [3])w}’ ; = 1/N ¥V n and Eq. S simplifies

on the fact th_at de_tect|ons may cont_am background areas o plzxP)p(xPx )

people) or hair regions (for faces). Fig. 5 shows two example Wy X (X, 20)

of detection results prior and after evidence fusion. X X1, %t
The resulting object detections are then used to initiahiee T0 compute the likelihoog(z;|x}'), we use a color histogram

object tracker as well as to solve track management issges®a" = [#171.1, - ¥7&) @s object model ([14], [24]), where
discussed in the next section. R, G and B is the number of bins in each color channel.

The color difference between the mod&l and a particle
p, dj(¢™, ¢P), is based on the Jeffrey divergence [16]. The

|Otc(wd7yd7wda hdan) N Sf(%])'

|Of($d7yded7 hdan)|

®)

(6)

IIl. GENERATING TRAJECTORIES likelihood is finally estimated as
A. The tracker (s 1 Wifﬂ @)
. . . . Pz Xy ) = € 7 .
Tracking estimates the state of an object in subsequent ! V2moy
frames. We use a patrticle filter tracker as it can deal with _ .
non-Gaussian multi-modal distributions [3], [14]. B. Particle propagation
Let us represent the target statesas= [z, y,w,h]. The Instead of using the transition prior only, we include objec

posteriorpdf of a target location in the state space is definedetections, when available, in thgroposal distribution a
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fraction of the particles are spread around the previous stiflieis_
according to the motion model, whereas the rest are sprd i"-‘% _
around the detections. For this reason, each detectionoha{fs -
be linked to the closest state. Thassociationis established l
with a gated nearest neighborhood filter, which selects t}&
detectionO¢ (x4, ya, wa, ha,n) closest to the state,, if it is e

in its proximity. The proximity conditions are

|£Cd - ftr| < 5c(wtr + nchtr)

|yd - ytr‘ < 6(3 (ncwtr + htr) (8) (a) (b)
(1 = ye)wir < wa < (14 7e)wir Fig. 6. Example of use of track management rules for sequencéa®3e
(1 =) her < hg < (14 ) her 270. (a) Without track management: the tracked ellipses degen (b) With

track management: the tracked ellipses correctly estimatéatieeareas.
where (x¢,, v ) is the centerwy, andhy, are the width and

height of the ellipse representing the object; apd = 1,
np =0, 05 = v = 0.25, 6, = vy = 0.5 are determined A track is terminatedif the low-level segmentation results
experimentally. The association is incorporated in Eq. 4 [1do not provide enough evidence for the presence of an object:

as: ~
|Xtc(xda Yd, Wd, hd7 n) N Stc(za .7)|

q(xe|xt-1,21) = acqa(xe|ze) + (1 — ae)p(xe|xi-1),  (9) | X¢(24, yg, wa, ha,n)|

< Ae, (12)

where a.. is the fraction of particles spread around the devith A\, = 0.2 and Ay = 0.1. Moreover, a person track
tection in the state space angl(x;|z;) is a Gaussian aroundis terminated if N; = 25 subsequent frames without an
the associated detection. If the proximity conditions ao¢ nassociated detection. A face track is terminated when tlee co
satisfied, a new candidate track is initialized and= 0. In histogram of the object changes drastically, i.e., therdeff
such a case, Eq. 9 reduces ¢x;|x;—1,2z:) = p(x¢|x;—1), divergenced; between the current target and the model is
whereas Eq. 6 reduces &g’ « p(z,|x}). larger than a thresholf). A cut-off distance ofD = 0.15 was
found appropriate. Also, we terminate the tracks that devia
more than3o from the average face size, learnt on the first
C. Model update 300 tracked faces. Finally, faces whose ratiouigh > 1.5
Object detections are also used to update online the objatg considered unlikely and therefore removed. An example
model M. This update aims to avoid track drifting when thef performance improvements achieved with the proposed
object appearance varies due to changes in illuminatiae, sinitialisation and termination rules is shown in Fig. 6.
or pose. The color histogram is updated according to

P (0) = Bel () + (1= Btk —1),  (10) E. Post-processing
, Track verificationis performed to remove false tracks in a
wherer = 1,...R; g = 1,....G; b= 1,....B and 5. is the qqt nrocessing stage. False tracks are generally @tiy
update factor. Note that the histogram is only updated Whilheated multiple detections on the same object. To remove
there is an associated detection in order to prevent bagkgro ihage tracks, a score is computed for each overlapping: track
pixels to become part of the modeH. st = (0.6N;)/50 + 0.4 fr4, wheres]" is the score for track
at timet, Ny is the number of frames tracked in a 50-frame
D. Track management issues window andfr, is the frequency of dptection. The Weight§ on
) L ) ) Ny (0.6) andfry (0.4) favor tracks with a long history against
Unlike [14], where tracks are initiated with a single depey ones with a high frequency. Finally, tracks shorter than

tection, we integrate information coming from the detectrs frames are likely to be clutter and therefore removed.
and the tracker processes to deal with track initiation and

termination issues. A detectiof®¢(x,y,w,h,n) that is not

associated with a track is considered as a candidatedok IV. PERFORMANCE MEASURES

initialization. Tracking is started isleeping modeTo switch To quantitatively evaluate the performance of the proposed
a track from sleepingto active mode, NN; detections are framework, two groups of measures are used, naghetgction
accumulated in subsequent frames. The valu&Vptlepends and tracking performance measures. We chosedasection

on frequency of the detections: measures Precisio?, and Recall,R, which are designed to
quantify the ability of an algorithm to identify true targein
N; = min < 3 1, 9> 7 (11) @ video, as opposed to false detections and missed detection
2 —% These measures are commonly used to evaluate the perfor-

] ] ] mance of database retrieval algorithms and are defined as
where f is the frequency of detections anfd= 9/20 is the
minimum frequency. If there is not a sufficient number of P = T;ﬂ% (13)
successive detections, then the track is discarded. = TPZ%,



EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING

TABLE |

SHORT INFORMATION ABOUT THE DATASETS

Dataset | Seq. Sequence name| Task Frames
AMI S1 | EN2001b.Closeuplf face 100-600
S2 | EN2001b.Closeup4 face 1-500
S3 1S1003c.L | face 1-500
S4 1IS1004a.R| face 250-750
CLEAR | S5 PVTRA102a09| people | 500-3001
S6 PVTRA102a10| people | 3007-5701
S7 PVTRA102all| people 1-500
S8 PVTRA102al2| people | 1000-1500
PETS | S9 PETS1SEG | people 1-500

where TP is the number dfue positives FP is the number
of false positivesand FN is the number dhlse negatives
The tracking performance measures quantify the accuracy.
of the estimated object sizeif) and the accuracy of the
estimated object positionif;s:). The measurelp quantifies

(d)

©

. Fig. 7. Comparison of tracking results betwedN (green) andPFI (blue).
the overlap between the ground truth and the estlmatedtssargga) Sequence S2 and (b) Sequence S4:NNealgorithm fails when there is

and is defined as low frequency of detections. (c) Sequence S6 and (d) Sequsiic theNN

filter produces jagged trajectories.

SN S [2 |G DY q
n=1 tst=1 (t) (t)
dp=1- L
Zu:l N}Ln
where Ggf) denotes the ground truth for track at time ¢; 06 =2 —
Dﬁf) denotes the corresponding estimated tardéf;, the 0® .

number of matched objects in the ground truth and the tracke - :\\
objects in a frameNy, the total number of frames, anyl, 0s
the total number of matched objects in the entire sequenct . |
The measurelp,,; is the distance between the centers of the o
estimated tracked object and the ground truth, normalized b
the size of the ground truth: s2

06

Npn ~Nir - -
¥ L i
Ny, ’ 03]
SN, e

where (z4,y4) and (z4,y,) are the centers of the tracked o1
object and the ground truthy, and h, are the width and °
the height of the corresponding ground truth object.

T
248 258 268 278 288 298 308 318 328 338

dpist =

17 22 27 32 37 42 47 52 57 62 67
Fmames

S5
06

V. EXPERIMENTAL RESULTS 0s /\ =
04 Nen A

We demonstrate the proposed framework on three star,
dard datasets, namely CLEAR, AMI and PETS 2001. Thes:

02

datasets include indoor and outdoor scenarios for a total ¢ . |

8700 frames (Table ). 0 ‘ ‘ ‘ : :
The same set of parameters is used for motion segmentatic ~ ***° 2250 2000 o 2700 2750 2800
and for the tracker in all the experiments. For the statitic o

06

change detector, the noise varianceris- 1.8 and the kernel
size isk = 3. The particle filter usesl50 particles per 0l
object, with a transition factor of2 pixels per frame. For the 4, .5
likelihood (Eq. 7),cq = 0.068. For facesa; = 0.9, 5y = 0.35 021
and for peopler, = 0.25, 8, = 0.1. There values have been o1
found appropriate after extensive testing. The histogram f .
the color model and the likelihood is uniformly quantizediwi

10 x 10 x 10 bins in the RGB space. . Fig. 8. Performance comparison of face tracks (sequence S&2ndnd

We compare the proposed approach that integrates géjple tracks (sequence S5) foF and PFI.
tections and particle filtering (referred to &1) with the
particle filtering alone (referred to aBF). To offer a fair

‘fPFI‘

A R

T
2700

T T T T
2550 2600 2650 2750 2800

Frames
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COMPARISON OF TRACKING PERFORMANCEMEANS AND STANDARD

TABLE I

DEVIATION FOR 8 RUNS).

Faces
Seq. PFI PF NN
S1 dp(o4qp) 0.24(0.02) | 0.25(0.03) | 0.27
dpist(0ap,,,) | 0.10(0.004)| 0.14(0.02)| 0.10
P(op) 0.76(0.06) | 0.70(0.03)| 0.70
R(og) 1.00(0) 0.98(0.03)| 1
S2 dp(o4qp) 0.28(0.01) | 0.34(0.01)| 0.28
dpist(0dp,,,) | 0.13(0.005)| 0.24(0.01)| 0.12
P(op) 0.95(0.01) | 0.92(0.03) | 0.94
R(og) 0.96(0.01) | 0.89(0.01)| 0.94
S3 dp(cap) 0.27(0.03) | 0.39(0.01)| 0.32
dpist(0dp,,,) | 0.13(0.02) | 0.21(0.02)| 0.16
P(op 0.52(0.03) | 0.38(0.02) | 0.47
R(og) 0.73(0.03) | 0.74(0.02)| 0.72
S4 dp(oap) 0.38(0.03) | 0.49(0.03)| 0.26
dpist(0ap,,,) | 0.26(0.03) | 0.41(0.04)| 0.17
P(op) 0.66(0.08) | 0.52(0.04)| 0.60
R(oR) 0.69(0.06) | 0.48(0.05)| 0.29
People
Seq. PFI PF NN
S5 dp(oap) 0.25(0.02) | 0.26(0.01) | 0.24
dpist(dp,,,) | 0.18(0.01) | 0.17(0.02)| 0.19
P(op) 0.78(0.02) | 0.78(0.01)| 0.80
R(oR) 0.90(0.02) | 0.92(0.03)| 0.82 i ) ] )
S6 dp(Tap) 0.25(0.05) | 0.35(0.03)| 0.21 Fig. 9. Comparison of tracking result witPF (green) andPFl (blue). (a-b)
dpist(0ap,.,) | 0.16(0.03) | 0.22(0.02)| 0.13 Sequence S5. (c) Sequence S2. (d) Sequence S3.
P(op 0.23(0.04) | 0.22(0) | 0.26
R(og) 0.55(0.08) | 0.59(0.11)| 0.62
S7 dp(cap) 0.36(0.04) | 0.36(0.01)| 0.31
dpist(0dp,,,) | 0.21(0.02) | 0.24(0.02)| 0.17
P(op) 0.74(0.04) | 0.70(0.02) | 0.81
R(op) 0.84(0.01) | 0.84(0.01)| 0.84
S8 dp(oaqp) 0.34(0.03) | 0.37(0.04)| 0.35
dpist(0dp,,,) | 0.21(0.02) | 0.21(0.03)| 0.21
P(op) 0.59(0.02) | 0.57(0.03) | 0.60
R(og) 0.67(0.02) | 0.65(0.04)| 0.61

comparison, in both cases the initialization and termamati
rules presented in Section IlI-D are used. We also compkie
with the nearest neighborhood filteXl{). The measurements
used for evaluation are the mearip( dp;s;, R and P)
and the corresponding standard deviations8oruns of the
performance measures presented in Section IV (see Table If
The comparison oPFI andPF for faces shows thép and
dp;s: Scores are smaller for all face sequences indicddatter
correspondence between track ellipses and the ground truf]
Further,R and P are larger for the same sequences, except fo
one R score. Fig. 9 shows sample results of people and face
tracking and their frame-wisép scores are illustrated in Fig.
8. In Fig. 8, row 1, the quality oPFI results improve more
quickly than those ofPF. The averageip for PFI is 0.17
and forPF 0.33, and in Fig. 8, row 2, the average fBFI is
0.24 and the average fdPF 0.31. Fig. 8, row 3 and row 4,
are human tracking examples with average R&il 0.22 and
0.12 and with average foPF 0.30 and0.15, respectively. The

lower average values afp in all these cases shows improved ) ) o )
£ PFEI over PE Fig. 10. Example of trajectory-based video description anjdai prototypes.
perrormance o v : (a) Resulting tracks superimposed on the images. (b) Evalutiche tracks

The comparison betwedPFl andNN for faces shows that over time. (c) Automatically generated key-objects for fednteft and right
the dp and dp;,; scores are better for sequence S1 and S%0file faces.
similar for sequence S2, whereas these scores indicater bett

100 150 200 250 300 350
Width in pixels
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performance of theN tracker for S4, but with lowe? and
P scores. The reason is that in S4 tN& tracker fails to
track in parts of the sequence with very low frequency q{O]
detections, whereas the particle filter succeeds in trgckin
these regions (Fig. 7). For people tracking, the scores are
similar for S5 and S8, wheredsN is better for S6 and S7 1]
because sometimes detections that are larger than thenperso
dominate in frequency, anBFI will filter out the correctly
sized detections (which are instead taken into accoumy

To conclude, Fig. 10 shows an example of trajectory:2]
based video description using spatio-temporal objecedraj
tories of two faces and the corresponding object prototypgs;
(frontal and profile faces). Only the true tracks are com-
puted by the proposed algorithm and false detections aﬁg]
associated tracks are filtered out using skin color segmen-
tation and post—processing. Videos results are available a
http://lwww.elec.gmul.ac.uk/staffinfo/andrea/detratil.

B

[15]
VI. CONCLUSIONS [16]

We presented a general video analysis framework for de-
tecting and tracking object categories and demonstrated it
people and faces. Video results and quantitative measumtemé!7]
show that the proposed integration of detections with glarti
filtering improves the robustness of the state estimatiohef [1g]
targets.

The proposed framework is general and classifiers of ot &)
body parts and other object types can be incorporated withou
changing the overall structure of the algorithm. Using addi
tional object detectors, a complete story line of a videceHas!
on specific object categories and their trajectories co@d b
produced, describing interactions and other importanhtsve
Moreover, the video could be annotated semantically with!!
identity information of the appearing persons by addingca fa
recognition module [8]. [22]

Our current work includes improving the performance of
the human detector by using a larger training database and
refining the bounding boxes of the detection using edges dAd
motion segmentation results.

[24]
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